基于线性深度学习的最优控制

Vinícius Lima, D. Phan, Lam M. Nguyen, J. Kalagnanam
{"title":"基于线性深度学习的最优控制","authors":"Vinícius Lima, D. Phan, Lam M. Nguyen, J. Kalagnanam","doi":"10.23919/ACC55779.2023.10155810","DOIUrl":null,"url":null,"abstract":"Deep learning models are frequently used to capture relations between inputs and outputs and to predict operation costs in dynamical systems. Computing optimal control policies based on the resulting regression models, however, is a challenging task because of the nonlinearity and nonconvexity of deep learning architectures. To address this issue, we propose in this paper a linearizable approach to design optimal control policies based on deep learning models for handling both continuous and discrete action spaces. When using piecewise linear activation functions, one can construct an equivalent representation of recurrent neural networks in terms of a set of mixed-integer linear constraints. That in turn means that the optimal control problem reduces to a mixed-integer linear program (MILP), which can then be solved using offthe-shelf MILP optimization solvers. Numerical experiments on standard reinforcement learning benchmarks attest to the good performance of the proposed approach.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control via Linearizable Deep Learning\",\"authors\":\"Vinícius Lima, D. Phan, Lam M. Nguyen, J. Kalagnanam\",\"doi\":\"10.23919/ACC55779.2023.10155810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models are frequently used to capture relations between inputs and outputs and to predict operation costs in dynamical systems. Computing optimal control policies based on the resulting regression models, however, is a challenging task because of the nonlinearity and nonconvexity of deep learning architectures. To address this issue, we propose in this paper a linearizable approach to design optimal control policies based on deep learning models for handling both continuous and discrete action spaces. When using piecewise linear activation functions, one can construct an equivalent representation of recurrent neural networks in terms of a set of mixed-integer linear constraints. That in turn means that the optimal control problem reduces to a mixed-integer linear program (MILP), which can then be solved using offthe-shelf MILP optimization solvers. Numerical experiments on standard reinforcement learning benchmarks attest to the good performance of the proposed approach.\",\"PeriodicalId\":397401,\"journal\":{\"name\":\"2023 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC55779.2023.10155810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型经常用于捕获输入和输出之间的关系,并预测动态系统中的运行成本。然而,由于深度学习体系结构的非线性和非凸性,基于所得回归模型计算最优控制策略是一项具有挑战性的任务。为了解决这个问题,我们在本文中提出了一种线性化的方法来设计基于深度学习模型的最优控制策略,用于处理连续和离散动作空间。当使用分段线性激活函数时,可以根据一组混合整数线性约束构造一个等价的递归神经网络表示。这反过来意味着最优控制问题减少到一个混合整数线性规划(MILP),然后可以使用现成的MILP优化求解器来解决。在标准强化学习基准上的数值实验证明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control via Linearizable Deep Learning
Deep learning models are frequently used to capture relations between inputs and outputs and to predict operation costs in dynamical systems. Computing optimal control policies based on the resulting regression models, however, is a challenging task because of the nonlinearity and nonconvexity of deep learning architectures. To address this issue, we propose in this paper a linearizable approach to design optimal control policies based on deep learning models for handling both continuous and discrete action spaces. When using piecewise linear activation functions, one can construct an equivalent representation of recurrent neural networks in terms of a set of mixed-integer linear constraints. That in turn means that the optimal control problem reduces to a mixed-integer linear program (MILP), which can then be solved using offthe-shelf MILP optimization solvers. Numerical experiments on standard reinforcement learning benchmarks attest to the good performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信