视觉监视系统的前景目标检测与跟踪:一种混合方法

S. Oh, S. Javed, Soon Ki Jung
{"title":"视觉监视系统的前景目标检测与跟踪:一种混合方法","authors":"S. Oh, S. Javed, Soon Ki Jung","doi":"10.1109/FIT.2013.10","DOIUrl":null,"url":null,"abstract":"Foreground detection is one of the fundamental preprocessing steps in many image processing and computer vision applications. In spite of significant efforts, however, slowly moving foregrounds or temporarily stationary foregrounds remains challenging problem. To address these problems, this paper presents a hybrid approach, which combines background segmentation and long-term tracking with selective tracking and reducing search area, we robustly and effectively detect the foreground objects. The evaluation of realistic sequences from i-LIDS dataset shows that the proposed methodology outperforms with most of the state-of-the-art methods.","PeriodicalId":179067,"journal":{"name":"2013 11th International Conference on Frontiers of Information Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Foreground Object Detection and Tracking for Visual Surveillance System: A Hybrid Approach\",\"authors\":\"S. Oh, S. Javed, Soon Ki Jung\",\"doi\":\"10.1109/FIT.2013.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foreground detection is one of the fundamental preprocessing steps in many image processing and computer vision applications. In spite of significant efforts, however, slowly moving foregrounds or temporarily stationary foregrounds remains challenging problem. To address these problems, this paper presents a hybrid approach, which combines background segmentation and long-term tracking with selective tracking and reducing search area, we robustly and effectively detect the foreground objects. The evaluation of realistic sequences from i-LIDS dataset shows that the proposed methodology outperforms with most of the state-of-the-art methods.\",\"PeriodicalId\":179067,\"journal\":{\"name\":\"2013 11th International Conference on Frontiers of Information Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2013.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

前景检测是许多图像处理和计算机视觉应用的基本预处理步骤之一。然而,尽管做出了巨大的努力,缓慢移动的前景或暂时静止的前景仍然是一个具有挑战性的问题。针对这些问题,本文提出了一种混合方法,将背景分割和长期跟踪与选择性跟踪和缩小搜索区域相结合,对前景目标进行鲁棒有效检测。对来自i-LIDS数据集的真实序列的评估表明,所提出的方法优于大多数最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foreground Object Detection and Tracking for Visual Surveillance System: A Hybrid Approach
Foreground detection is one of the fundamental preprocessing steps in many image processing and computer vision applications. In spite of significant efforts, however, slowly moving foregrounds or temporarily stationary foregrounds remains challenging problem. To address these problems, this paper presents a hybrid approach, which combines background segmentation and long-term tracking with selective tracking and reducing search area, we robustly and effectively detect the foreground objects. The evaluation of realistic sequences from i-LIDS dataset shows that the proposed methodology outperforms with most of the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信