{"title":"不确定二维离散系统的鲁棒有限频率H∞模型约简","authors":"A. El‐Amrani, A. Hajjaji, J. Bosche, A. Aitouche","doi":"10.1109/MED54222.2022.9837190","DOIUrl":null,"url":null,"abstract":"In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design a reduced order model minimizing H∞ performance in a known finite-frequency (FF) area of the noises able to reproduce the behavior of the uncertain 2D original system. Using Lyapunov function and generalized Kalman Yakubovich Popov (gKYP) lemma, sufficient conditions for the existence of the FF reduced order design approach are formulated as feasibility of a set of Linear Matrix Inequalities (LMIs). Numerical simulations are given to illustrate the validity and feasibility of the designed reduced-order model.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust finite-frequency H∞ model reduction for uncertain 2D discrete systems\",\"authors\":\"A. El‐Amrani, A. Hajjaji, J. Bosche, A. Aitouche\",\"doi\":\"10.1109/MED54222.2022.9837190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design a reduced order model minimizing H∞ performance in a known finite-frequency (FF) area of the noises able to reproduce the behavior of the uncertain 2D original system. Using Lyapunov function and generalized Kalman Yakubovich Popov (gKYP) lemma, sufficient conditions for the existence of the FF reduced order design approach are formulated as feasibility of a set of Linear Matrix Inequalities (LMIs). Numerical simulations are given to illustrate the validity and feasibility of the designed reduced-order model.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust finite-frequency H∞ model reduction for uncertain 2D discrete systems
In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design a reduced order model minimizing H∞ performance in a known finite-frequency (FF) area of the noises able to reproduce the behavior of the uncertain 2D original system. Using Lyapunov function and generalized Kalman Yakubovich Popov (gKYP) lemma, sufficient conditions for the existence of the FF reduced order design approach are formulated as feasibility of a set of Linear Matrix Inequalities (LMIs). Numerical simulations are given to illustrate the validity and feasibility of the designed reduced-order model.