直接使用词作为语音识别声学建模单元的探索

Chunlei Zhang, Chengzhu Yu, Chao Weng, Jia Cui, Dong Yu
{"title":"直接使用词作为语音识别声学建模单元的探索","authors":"Chunlei Zhang, Chengzhu Yu, Chao Weng, Jia Cui, Dong Yu","doi":"10.1109/SLT.2018.8639623","DOIUrl":null,"url":null,"abstract":"Conventional acoustic models for automatic speech recognition (ASR) are usually constructed from sub-word unit (e.g., context-dependent phoneme, grapheme, wordpiece etc.). Recent studies demonstrate that connectionist temporal classification (CTC) based acoustic-to-word (A2W) models are also promising for ASR. Such structures have drawn increasing attention as they can directly target words as output units, which simplify ASR pipeline by avoiding additional pronunciation lexicon, or even language model. In this study, we systematically explore to use word as acoustic modeling unit for conversational speech recognition. By replacing senone alignment with word alignment in a convolutional bidirectional LSTM architecture and employing a lexicon-free weighted finite-state transducer (WFST) based decoding, we greatly simplify conventional hybrid speech recognition system. On Hub5-2000 Switchboard/CallHome test sets with 300-hour training data, we achieve a WER that is close to the senone based hybrid systems with a WFST based decoding.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Exploration of Directly Using Word as ACOUSTIC Modeling Unit for Speech Recognition\",\"authors\":\"Chunlei Zhang, Chengzhu Yu, Chao Weng, Jia Cui, Dong Yu\",\"doi\":\"10.1109/SLT.2018.8639623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional acoustic models for automatic speech recognition (ASR) are usually constructed from sub-word unit (e.g., context-dependent phoneme, grapheme, wordpiece etc.). Recent studies demonstrate that connectionist temporal classification (CTC) based acoustic-to-word (A2W) models are also promising for ASR. Such structures have drawn increasing attention as they can directly target words as output units, which simplify ASR pipeline by avoiding additional pronunciation lexicon, or even language model. In this study, we systematically explore to use word as acoustic modeling unit for conversational speech recognition. By replacing senone alignment with word alignment in a convolutional bidirectional LSTM architecture and employing a lexicon-free weighted finite-state transducer (WFST) based decoding, we greatly simplify conventional hybrid speech recognition system. On Hub5-2000 Switchboard/CallHome test sets with 300-hour training data, we achieve a WER that is close to the senone based hybrid systems with a WFST based decoding.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

传统的自动语音识别声学模型通常是由子词单元(如上下文相关的音素、字素、词块等)构建的。最近的研究表明,基于连接主义时间分类(CTC)的声-词(A2W)模型也有希望用于ASR。这种结构可以直接以单词为输出单位,避免了额外的发音词汇甚至语言模型,简化了ASR管道,因此越来越受到人们的关注。在本研究中,我们系统地探索了使用单词作为会话语音识别的声学建模单元。通过在卷积双向LSTM架构中用词对齐取代词对齐,并采用基于无词典的加权有限状态换能器(WFST)解码,大大简化了传统的混合语音识别系统。在具有300小时训练数据的Hub5-2000 Switchboard/CallHome测试集上,我们实现了接近基于senone的混合系统和基于WFST的解码的WER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exploration of Directly Using Word as ACOUSTIC Modeling Unit for Speech Recognition
Conventional acoustic models for automatic speech recognition (ASR) are usually constructed from sub-word unit (e.g., context-dependent phoneme, grapheme, wordpiece etc.). Recent studies demonstrate that connectionist temporal classification (CTC) based acoustic-to-word (A2W) models are also promising for ASR. Such structures have drawn increasing attention as they can directly target words as output units, which simplify ASR pipeline by avoiding additional pronunciation lexicon, or even language model. In this study, we systematically explore to use word as acoustic modeling unit for conversational speech recognition. By replacing senone alignment with word alignment in a convolutional bidirectional LSTM architecture and employing a lexicon-free weighted finite-state transducer (WFST) based decoding, we greatly simplify conventional hybrid speech recognition system. On Hub5-2000 Switchboard/CallHome test sets with 300-hour training data, we achieve a WER that is close to the senone based hybrid systems with a WFST based decoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信