W. Luo, G. Jullien, N. Wigley, W. Miller, Zhongde Wang
{"title":"使用费马数ALU进行内积计算的阵列处理器","authors":"W. Luo, G. Jullien, N. Wigley, W. Miller, Zhongde Wang","doi":"10.1109/ASAP.1995.522931","DOIUrl":null,"url":null,"abstract":"This paper explores an architecture for parallel independent computations of inner products over the direct product ring /spl Rfr//sub 257/spl times/17/. The structure is based on the polynomial mapping of the Modulus Replication RNS for calculations over dynamic ranges much larger than the product of the computational moduli. We show that the computational ring is optimal for our purposes, and introduce basic cells for the efficient calculation of all elements of the polynomial ring computations.","PeriodicalId":354358,"journal":{"name":"Proceedings The International Conference on Application Specific Array Processors","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An array processor for inner product computations using a Fermat number ALU\",\"authors\":\"W. Luo, G. Jullien, N. Wigley, W. Miller, Zhongde Wang\",\"doi\":\"10.1109/ASAP.1995.522931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores an architecture for parallel independent computations of inner products over the direct product ring /spl Rfr//sub 257/spl times/17/. The structure is based on the polynomial mapping of the Modulus Replication RNS for calculations over dynamic ranges much larger than the product of the computational moduli. We show that the computational ring is optimal for our purposes, and introduce basic cells for the efficient calculation of all elements of the polynomial ring computations.\",\"PeriodicalId\":354358,\"journal\":{\"name\":\"Proceedings The International Conference on Application Specific Array Processors\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings The International Conference on Application Specific Array Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.1995.522931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings The International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1995.522931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An array processor for inner product computations using a Fermat number ALU
This paper explores an architecture for parallel independent computations of inner products over the direct product ring /spl Rfr//sub 257/spl times/17/. The structure is based on the polynomial mapping of the Modulus Replication RNS for calculations over dynamic ranges much larger than the product of the computational moduli. We show that the computational ring is optimal for our purposes, and introduce basic cells for the efficient calculation of all elements of the polynomial ring computations.