{"title":"用于测量心率变异性的可穿戴传感器的计量特性和信号处理","authors":"N. Morresi, S. Casaccia, G. M. Revel","doi":"10.1109/MeMeA52024.2021.9478713","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for the processing of the Photoplethysmography (PPG) signal measured using a smartwatch during motion tests. For statistical validation, signals from 15 healthy subjects have been collected while the subjects are walking on a treadmill. The motion artifacts (MAs) of the PPG signal have been removed demonstrating that the 37% of the signals are affected by MAs. Then, the experimental performance assessment of the PPG signal, from which the heart rate variability (HRV) has been extracted, by measuring the RR intervals, is compared to the RR intervals extracted from ECG signals measured using a multi-parametric chest belt that is considered as a reference sensor. The uncertainty of the PPG sensor in the measurement of the RR intervals is ± 169 ms, (with a coverage factor k = 2) if compared to the reference method, which in percentage is 30%.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Metrological characterization and signal processing of a wearable sensor for the measurement of heart rate variability\",\"authors\":\"N. Morresi, S. Casaccia, G. M. Revel\",\"doi\":\"10.1109/MeMeA52024.2021.9478713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for the processing of the Photoplethysmography (PPG) signal measured using a smartwatch during motion tests. For statistical validation, signals from 15 healthy subjects have been collected while the subjects are walking on a treadmill. The motion artifacts (MAs) of the PPG signal have been removed demonstrating that the 37% of the signals are affected by MAs. Then, the experimental performance assessment of the PPG signal, from which the heart rate variability (HRV) has been extracted, by measuring the RR intervals, is compared to the RR intervals extracted from ECG signals measured using a multi-parametric chest belt that is considered as a reference sensor. The uncertainty of the PPG sensor in the measurement of the RR intervals is ± 169 ms, (with a coverage factor k = 2) if compared to the reference method, which in percentage is 30%.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metrological characterization and signal processing of a wearable sensor for the measurement of heart rate variability
This paper presents a methodology for the processing of the Photoplethysmography (PPG) signal measured using a smartwatch during motion tests. For statistical validation, signals from 15 healthy subjects have been collected while the subjects are walking on a treadmill. The motion artifacts (MAs) of the PPG signal have been removed demonstrating that the 37% of the signals are affected by MAs. Then, the experimental performance assessment of the PPG signal, from which the heart rate variability (HRV) has been extracted, by measuring the RR intervals, is compared to the RR intervals extracted from ECG signals measured using a multi-parametric chest belt that is considered as a reference sensor. The uncertainty of the PPG sensor in the measurement of the RR intervals is ± 169 ms, (with a coverage factor k = 2) if compared to the reference method, which in percentage is 30%.