{"title":"adaboost辅助的高效在线顺序分类极限学习机","authors":"Yi-Ta Chen, Yu-Chuan Chuang, A. Wu","doi":"10.1109/SiPS47522.2019.9020609","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an AdaBoost-assisted extreme learning machine for efficient online sequential classification (AOS-ELM). In order to achieve better accuracy in online sequential learning scenarios, we utilize the cost-sensitive algorithm-AdaBoost, which diversifying the weak classifiers, and adding the forgetting mechanism, which stabilizing the performance during the training procedure. Hence, AOS-ELM adapts better to sequentially arrived data compared with other voting based methods. The experiment results show AOS-ELM can achieve 94.41% accuracy on MNIST dataset, which is the theoretical accuracy bound performed by original batch learning algorithm, AdaBoost-ELM. Moreover, with the forgetting mechanism, the standard deviation of accuracy during the online sequential learning process is reduced to 8.26x.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AdaBoost-assisted Extreme Learning Machine for Efficient Online Sequential Classification\",\"authors\":\"Yi-Ta Chen, Yu-Chuan Chuang, A. Wu\",\"doi\":\"10.1109/SiPS47522.2019.9020609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an AdaBoost-assisted extreme learning machine for efficient online sequential classification (AOS-ELM). In order to achieve better accuracy in online sequential learning scenarios, we utilize the cost-sensitive algorithm-AdaBoost, which diversifying the weak classifiers, and adding the forgetting mechanism, which stabilizing the performance during the training procedure. Hence, AOS-ELM adapts better to sequentially arrived data compared with other voting based methods. The experiment results show AOS-ELM can achieve 94.41% accuracy on MNIST dataset, which is the theoretical accuracy bound performed by original batch learning algorithm, AdaBoost-ELM. Moreover, with the forgetting mechanism, the standard deviation of accuracy during the online sequential learning process is reduced to 8.26x.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AdaBoost-assisted Extreme Learning Machine for Efficient Online Sequential Classification
In this paper, we propose an AdaBoost-assisted extreme learning machine for efficient online sequential classification (AOS-ELM). In order to achieve better accuracy in online sequential learning scenarios, we utilize the cost-sensitive algorithm-AdaBoost, which diversifying the weak classifiers, and adding the forgetting mechanism, which stabilizing the performance during the training procedure. Hence, AOS-ELM adapts better to sequentially arrived data compared with other voting based methods. The experiment results show AOS-ELM can achieve 94.41% accuracy on MNIST dataset, which is the theoretical accuracy bound performed by original batch learning algorithm, AdaBoost-ELM. Moreover, with the forgetting mechanism, the standard deviation of accuracy during the online sequential learning process is reduced to 8.26x.