R. E. Nasir, W. Kuntjoro, W. Wisnoe, Z. Ali, N. Reduan, Firdaus Mohamad, Ramzyzan Ramly
{"title":"基线- ii型翼身混合型飞机在低亚音速下的静稳定性:基于计算流体动力学模拟的研究","authors":"R. E. Nasir, W. Kuntjoro, W. Wisnoe, Z. Ali, N. Reduan, Firdaus Mohamad, Ramzyzan Ramly","doi":"10.1109/CSSR.2010.5773932","DOIUrl":null,"url":null,"abstract":"A study of the effect of canard to Baseline-II blended wing-body aircraft is presented here with emphasis on investigating contributions of canard's various setting angle to aerodynamic parameters and longitudinal static stability. A computational fluid dynamic (CFD) simulation has been conducted at low subsonic speed to collect aerodynamic data and found that its aerodynamic trend is similar to many BWB aircraft and consistent to previous studies conducted in UiTM. Canard setting angle affects the value of lift-at-zero incidence of a BWB aircraft, although fairly small for current canard size that it is not adequate to produce positive pitching moment-at-zero lift. Baseline-II is partially, statically stable in longitudinal motion because of negative moment change w.r.t. lift change but it has equilibrium incidence angle that only produces negative lift. Larger canard and/or modification to Baseline-II wing-body are needed to overcome this flaw. The location of new reference point provides ‘comfortable’ static margin. Data and mathematical characteristic obtained from BL-IIA SP CFD simulation is comparable to those from wind tunnel experiment and both show satisfactory-to-good correlation to theoretical calculations.","PeriodicalId":236344,"journal":{"name":"2010 International Conference on Science and Social Research (CSSR 2010)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Static stability of Baseline-II blended wing- body aircraft at low subsonic speed: Investigation via computational fluid dynamics simulation\",\"authors\":\"R. E. Nasir, W. Kuntjoro, W. Wisnoe, Z. Ali, N. Reduan, Firdaus Mohamad, Ramzyzan Ramly\",\"doi\":\"10.1109/CSSR.2010.5773932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study of the effect of canard to Baseline-II blended wing-body aircraft is presented here with emphasis on investigating contributions of canard's various setting angle to aerodynamic parameters and longitudinal static stability. A computational fluid dynamic (CFD) simulation has been conducted at low subsonic speed to collect aerodynamic data and found that its aerodynamic trend is similar to many BWB aircraft and consistent to previous studies conducted in UiTM. Canard setting angle affects the value of lift-at-zero incidence of a BWB aircraft, although fairly small for current canard size that it is not adequate to produce positive pitching moment-at-zero lift. Baseline-II is partially, statically stable in longitudinal motion because of negative moment change w.r.t. lift change but it has equilibrium incidence angle that only produces negative lift. Larger canard and/or modification to Baseline-II wing-body are needed to overcome this flaw. The location of new reference point provides ‘comfortable’ static margin. Data and mathematical characteristic obtained from BL-IIA SP CFD simulation is comparable to those from wind tunnel experiment and both show satisfactory-to-good correlation to theoretical calculations.\",\"PeriodicalId\":236344,\"journal\":{\"name\":\"2010 International Conference on Science and Social Research (CSSR 2010)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Science and Social Research (CSSR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSSR.2010.5773932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Science and Social Research (CSSR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSSR.2010.5773932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Static stability of Baseline-II blended wing- body aircraft at low subsonic speed: Investigation via computational fluid dynamics simulation
A study of the effect of canard to Baseline-II blended wing-body aircraft is presented here with emphasis on investigating contributions of canard's various setting angle to aerodynamic parameters and longitudinal static stability. A computational fluid dynamic (CFD) simulation has been conducted at low subsonic speed to collect aerodynamic data and found that its aerodynamic trend is similar to many BWB aircraft and consistent to previous studies conducted in UiTM. Canard setting angle affects the value of lift-at-zero incidence of a BWB aircraft, although fairly small for current canard size that it is not adequate to produce positive pitching moment-at-zero lift. Baseline-II is partially, statically stable in longitudinal motion because of negative moment change w.r.t. lift change but it has equilibrium incidence angle that only produces negative lift. Larger canard and/or modification to Baseline-II wing-body are needed to overcome this flaw. The location of new reference point provides ‘comfortable’ static margin. Data and mathematical characteristic obtained from BL-IIA SP CFD simulation is comparable to those from wind tunnel experiment and both show satisfactory-to-good correlation to theoretical calculations.