基于MobileNet-V2迁移学习的端到端卷积神经网络自动驾驶

Minghong Hu, Hui Guo, Xuyuan Ji
{"title":"基于MobileNet-V2迁移学习的端到端卷积神经网络自动驾驶","authors":"Minghong Hu, Hui Guo, Xuyuan Ji","doi":"10.1145/3356422.3356458","DOIUrl":null,"url":null,"abstract":"Convolutional neural network is gradually mature, followed by the arrival of 5G era, autonomous driving will become a development hotspot. MobileNet is a Convolutional Neural Network used depthwise separable convolutions to decrease parameters so that the devices with limited resources can use it to complete image recognition. In this paper, we use MobileNet-V2 migration learning improvement to simulate automatic driving steering on embedded devices. In this experiment, in our data set, we compared Nvidia end-to-end automated driving network with our migration learning neural network based on MobileNet-V2 end-to-end convolution. The improved MobileNet-V2 network can works on raspberries pi only has CPU faster and real-time prediction to keep in the lane line, ensure the model to reduce the number of parameter at the same time, the identification error decreases.","PeriodicalId":197051,"journal":{"name":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Driving of End-to-end Convolutional Neural Network Based on MobileNet-V2 Migration Learning\",\"authors\":\"Minghong Hu, Hui Guo, Xuyuan Ji\",\"doi\":\"10.1145/3356422.3356458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural network is gradually mature, followed by the arrival of 5G era, autonomous driving will become a development hotspot. MobileNet is a Convolutional Neural Network used depthwise separable convolutions to decrease parameters so that the devices with limited resources can use it to complete image recognition. In this paper, we use MobileNet-V2 migration learning improvement to simulate automatic driving steering on embedded devices. In this experiment, in our data set, we compared Nvidia end-to-end automated driving network with our migration learning neural network based on MobileNet-V2 end-to-end convolution. The improved MobileNet-V2 network can works on raspberries pi only has CPU faster and real-time prediction to keep in the lane line, ensure the model to reduce the number of parameter at the same time, the identification error decreases.\",\"PeriodicalId\":197051,\"journal\":{\"name\":\"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3356422.3356458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356422.3356458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

卷积神经网络逐渐成熟,随之而来的是5G时代的到来,自动驾驶将成为一个发展热点。MobileNet是一种卷积神经网络,它使用深度可分离卷积来减少参数,使有限资源的设备可以使用它来完成图像识别。在本文中,我们使用MobileNet-V2迁移学习改进来模拟嵌入式设备上的自动驾驶转向。在这个实验中,在我们的数据集中,我们比较了Nvidia端到端自动驾驶网络和我们基于MobileNet-V2端到端卷积的迁移学习神经网络。改进后的MobileNet-V2网络可以在树莓派上工作,只有CPU速度更快,并且实时预测保持在车道线上,保证模型参数数量减少的同时,识别误差减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Driving of End-to-end Convolutional Neural Network Based on MobileNet-V2 Migration Learning
Convolutional neural network is gradually mature, followed by the arrival of 5G era, autonomous driving will become a development hotspot. MobileNet is a Convolutional Neural Network used depthwise separable convolutions to decrease parameters so that the devices with limited resources can use it to complete image recognition. In this paper, we use MobileNet-V2 migration learning improvement to simulate automatic driving steering on embedded devices. In this experiment, in our data set, we compared Nvidia end-to-end automated driving network with our migration learning neural network based on MobileNet-V2 end-to-end convolution. The improved MobileNet-V2 network can works on raspberries pi only has CPU faster and real-time prediction to keep in the lane line, ensure the model to reduce the number of parameter at the same time, the identification error decreases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信