{"title":"基于YOLOv4迁移学习的印度餐盘目标检测","authors":"Deepanshu Pandey, Purva Parmar, Gauri Toshniwal, Mansi Goel, Vishesh Agrawal, Shivangi Dhiman, Lavanya Gupta, Ganesh Bagler","doi":"10.48550/arXiv.2205.04841","DOIUrl":null,"url":null,"abstract":"Object detection is a well-known problem in computer vision. Despite this, its usage and pervasiveness in the traditional Indian food dishes has been limited. Particularly, recognizing Indian food dishes present in a single photo is challenging due to three reasons: 1. Lack of annotated Indian food datasets 2. Non-distinct boundaries between the dishes 3. High intra-class variation. We solve these issues by providing a comprehensively labelled Indian food dataset- IndianFood10, which contains 10 food classes that appear frequently in a staple Indian meal and using transfer learning with YOLOv4 object detector model. Our model is able to achieve an overall mAP score of 91.8% and f1-score of 0.90 for our 10 class dataset. We also provide an extension of our 10 class dataset- IndianFood20, which contains 10 more traditional Indian food classes.","PeriodicalId":429378,"journal":{"name":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Object Detection in Indian Food Platters using Transfer Learning with YOLOv4\",\"authors\":\"Deepanshu Pandey, Purva Parmar, Gauri Toshniwal, Mansi Goel, Vishesh Agrawal, Shivangi Dhiman, Lavanya Gupta, Ganesh Bagler\",\"doi\":\"10.48550/arXiv.2205.04841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is a well-known problem in computer vision. Despite this, its usage and pervasiveness in the traditional Indian food dishes has been limited. Particularly, recognizing Indian food dishes present in a single photo is challenging due to three reasons: 1. Lack of annotated Indian food datasets 2. Non-distinct boundaries between the dishes 3. High intra-class variation. We solve these issues by providing a comprehensively labelled Indian food dataset- IndianFood10, which contains 10 food classes that appear frequently in a staple Indian meal and using transfer learning with YOLOv4 object detector model. Our model is able to achieve an overall mAP score of 91.8% and f1-score of 0.90 for our 10 class dataset. We also provide an extension of our 10 class dataset- IndianFood20, which contains 10 more traditional Indian food classes.\",\"PeriodicalId\":429378,\"journal\":{\"name\":\"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.04841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.04841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Object Detection in Indian Food Platters using Transfer Learning with YOLOv4
Object detection is a well-known problem in computer vision. Despite this, its usage and pervasiveness in the traditional Indian food dishes has been limited. Particularly, recognizing Indian food dishes present in a single photo is challenging due to three reasons: 1. Lack of annotated Indian food datasets 2. Non-distinct boundaries between the dishes 3. High intra-class variation. We solve these issues by providing a comprehensively labelled Indian food dataset- IndianFood10, which contains 10 food classes that appear frequently in a staple Indian meal and using transfer learning with YOLOv4 object detector model. Our model is able to achieve an overall mAP score of 91.8% and f1-score of 0.90 for our 10 class dataset. We also provide an extension of our 10 class dataset- IndianFood20, which contains 10 more traditional Indian food classes.