基于UAS激光雷达的冬小麦生物量估算的机器学习

J. Bates, F. Jonard, R. Bajracharya, H. Vereecken, C. Montzka
{"title":"基于UAS激光雷达的冬小麦生物量估算的机器学习","authors":"J. Bates, F. Jonard, R. Bajracharya, H. Vereecken, C. Montzka","doi":"10.5194/agile-giss-3-23-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations\",\"authors\":\"J. Bates, F. Jonard, R. Bajracharya, H. Vereecken, C. Montzka\",\"doi\":\"10.5194/agile-giss-3-23-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-3-23-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-23-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要生物量是生态和管理过程中的一个重要指标,由于无人机系统(UAS),现在可以在更高的时间和空间分辨率下进行估计。激光雷达传感器技术的进步使其尺寸更紧凑,可以与无人机平台集成。它的信号能够穿透植被冠层,从而沿着植物结构捕获更多信息。不同的研究使用激光雷达测量作物高度、与叶面积指数(LAI)相关的冠层穿透率,以及作为植物叶绿素状态或绿面积指数(GAI)指标的信号强度。这些激光雷达产品与人工神经网络(ANN)等机器学习方法相结合,以评估对冬小麦进行准确生物量估算的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations
Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信