非经常性道路事故持续时间的贝叶斯预测

Banishree Ghosh, M. Asif, J. Dauwels
{"title":"非经常性道路事故持续时间的贝叶斯预测","authors":"Banishree Ghosh, M. Asif, J. Dauwels","doi":"10.1109/TENCON.2016.7847964","DOIUrl":null,"url":null,"abstract":"Traffic incidents such as accidents or vehicle breakdowns are one of the major causes of traffic congestion in urban areas. Consequently, accurate prediction of duration of these incidents is considered as one of the most important challenges by traffic management authorities. Although data-driven regression methods can predict the duration of these incidents with reasonable precision. However, the prediction performance may vary considerably from one to another. Hence, it is important to provide some measure of confidence associated with the forecast duration of the incidents. Such measures can prove to be highly useful in planning real-time response. To address this issue, we propose Bayesian Support Vector Regression (BSVR), which gives error bars as the measurement of uncertainty along with the predicted duration of incidents. We also evaluate sensitivity and specificity for different error tolerance limit to assess the performance of BSVR.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bayesian prediction of the duration of non-recurring road incidents\",\"authors\":\"Banishree Ghosh, M. Asif, J. Dauwels\",\"doi\":\"10.1109/TENCON.2016.7847964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic incidents such as accidents or vehicle breakdowns are one of the major causes of traffic congestion in urban areas. Consequently, accurate prediction of duration of these incidents is considered as one of the most important challenges by traffic management authorities. Although data-driven regression methods can predict the duration of these incidents with reasonable precision. However, the prediction performance may vary considerably from one to another. Hence, it is important to provide some measure of confidence associated with the forecast duration of the incidents. Such measures can prove to be highly useful in planning real-time response. To address this issue, we propose Bayesian Support Vector Regression (BSVR), which gives error bars as the measurement of uncertainty along with the predicted duration of incidents. We also evaluate sensitivity and specificity for different error tolerance limit to assess the performance of BSVR.\",\"PeriodicalId\":246458,\"journal\":{\"name\":\"2016 IEEE Region 10 Conference (TENCON)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2016.7847964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7847964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

交通事故或车辆故障等交通事故是造成市区交通拥挤的主要原因之一。因此,准确预测这些事故的持续时间被交通管理部门视为最重要的挑战之一。虽然数据驱动的回归方法可以以合理的精度预测这些事件的持续时间。然而,预测性能可能会因人而异。因此,提供与预测事件持续时间相关的一些信心度量是很重要的。事实证明,这些措施在规划实时反应方面非常有用。为了解决这个问题,我们提出了贝叶斯支持向量回归(BSVR),它给出了误差条作为不确定性以及事件预测持续时间的测量。我们还评估了不同容错极限下BSVR的敏感性和特异性,以评估BSVR的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian prediction of the duration of non-recurring road incidents
Traffic incidents such as accidents or vehicle breakdowns are one of the major causes of traffic congestion in urban areas. Consequently, accurate prediction of duration of these incidents is considered as one of the most important challenges by traffic management authorities. Although data-driven regression methods can predict the duration of these incidents with reasonable precision. However, the prediction performance may vary considerably from one to another. Hence, it is important to provide some measure of confidence associated with the forecast duration of the incidents. Such measures can prove to be highly useful in planning real-time response. To address this issue, we propose Bayesian Support Vector Regression (BSVR), which gives error bars as the measurement of uncertainty along with the predicted duration of incidents. We also evaluate sensitivity and specificity for different error tolerance limit to assess the performance of BSVR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信