{"title":"气敏用coo - zno基纳米复合材料的合成与表征","authors":"Parthasarathy Panchatcharam","doi":"10.5772/intechopen.88760","DOIUrl":null,"url":null,"abstract":"CoO-ZnO composite nanofibers were synthesized through electrospinning technique. CoO-ZnO composite nanofibers were fabricated by doping zinc (zinc acetate dihydrate) and varied concentrations of cobalt (cobalt oxide) in the ratio of 1, 3, and 5 wt%, respectively. By modifying the solvent and the electrospinning parameters, different tests were carried out to optimize the morphological properties of the synthesized composite nanofibers. The morphological characterization was performed by scanning electron microscopy (SEM) with a field emission gun. The atomic composition of the nanofibers was analyzed by energy-dispersive X-ray (EDX) spectroscopy using a solid-state detector. Gas-sensing performances are done at different temperatures like at room temp, 50°C, and 100°C to find out the optimum operating temperature for detecting acetone gas. The sensitivity studies of CoO-ZnO composite nanofiber were carried out over different concentrations of acetone gas from 50 to 250 ppm. The sensitivity of this sensor developed is found to be increasing with increase in temperature and also increases if dopant concentration increases when compared with pure nanofibers. The sensitivity analysis proved a fact that uncalcinated CoO-ZnO composite nanofibers can be helpful in the detection of diabetics at the early stage with acetone concentration in the breaths.","PeriodicalId":391660,"journal":{"name":"Multilayer Thin Films - Versatile Applications for Materials Engineering","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and Characterization of CoO-ZnO-Based Nanocomposites for Gas-Sensing Applications\",\"authors\":\"Parthasarathy Panchatcharam\",\"doi\":\"10.5772/intechopen.88760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CoO-ZnO composite nanofibers were synthesized through electrospinning technique. CoO-ZnO composite nanofibers were fabricated by doping zinc (zinc acetate dihydrate) and varied concentrations of cobalt (cobalt oxide) in the ratio of 1, 3, and 5 wt%, respectively. By modifying the solvent and the electrospinning parameters, different tests were carried out to optimize the morphological properties of the synthesized composite nanofibers. The morphological characterization was performed by scanning electron microscopy (SEM) with a field emission gun. The atomic composition of the nanofibers was analyzed by energy-dispersive X-ray (EDX) spectroscopy using a solid-state detector. Gas-sensing performances are done at different temperatures like at room temp, 50°C, and 100°C to find out the optimum operating temperature for detecting acetone gas. The sensitivity studies of CoO-ZnO composite nanofiber were carried out over different concentrations of acetone gas from 50 to 250 ppm. The sensitivity of this sensor developed is found to be increasing with increase in temperature and also increases if dopant concentration increases when compared with pure nanofibers. The sensitivity analysis proved a fact that uncalcinated CoO-ZnO composite nanofibers can be helpful in the detection of diabetics at the early stage with acetone concentration in the breaths.\",\"PeriodicalId\":391660,\"journal\":{\"name\":\"Multilayer Thin Films - Versatile Applications for Materials Engineering\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multilayer Thin Films - Versatile Applications for Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.88760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multilayer Thin Films - Versatile Applications for Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of CoO-ZnO-Based Nanocomposites for Gas-Sensing Applications
CoO-ZnO composite nanofibers were synthesized through electrospinning technique. CoO-ZnO composite nanofibers were fabricated by doping zinc (zinc acetate dihydrate) and varied concentrations of cobalt (cobalt oxide) in the ratio of 1, 3, and 5 wt%, respectively. By modifying the solvent and the electrospinning parameters, different tests were carried out to optimize the morphological properties of the synthesized composite nanofibers. The morphological characterization was performed by scanning electron microscopy (SEM) with a field emission gun. The atomic composition of the nanofibers was analyzed by energy-dispersive X-ray (EDX) spectroscopy using a solid-state detector. Gas-sensing performances are done at different temperatures like at room temp, 50°C, and 100°C to find out the optimum operating temperature for detecting acetone gas. The sensitivity studies of CoO-ZnO composite nanofiber were carried out over different concentrations of acetone gas from 50 to 250 ppm. The sensitivity of this sensor developed is found to be increasing with increase in temperature and also increases if dopant concentration increases when compared with pure nanofibers. The sensitivity analysis proved a fact that uncalcinated CoO-ZnO composite nanofibers can be helpful in the detection of diabetics at the early stage with acetone concentration in the breaths.