{"title":"基于蝙蝠优化模糊KNN分类器的心电图心率分类","authors":"A. Verma, I. Saini, B. Saini","doi":"10.4018/978-1-5225-7952-6.CH007","DOIUrl":null,"url":null,"abstract":"In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.","PeriodicalId":416673,"journal":{"name":"Medical Data Security for Bioengineers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrocardiogram Beat Classification Using BAT-Optimized Fuzzy KNN Classifier\",\"authors\":\"A. Verma, I. Saini, B. Saini\",\"doi\":\"10.4018/978-1-5225-7952-6.CH007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.\",\"PeriodicalId\":416673,\"journal\":{\"name\":\"Medical Data Security for Bioengineers\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Data Security for Bioengineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-7952-6.CH007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Data Security for Bioengineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7952-6.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrocardiogram Beat Classification Using BAT-Optimized Fuzzy KNN Classifier
In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.