P. Ragazzo, S. Ferrari, Gaetano Dilevrano, Lorenzo Beatrici, Christian Girardi, G. Pellegrino
{"title":"升降系统中铁氧体辅助同步磁阻电机的标定","authors":"P. Ragazzo, S. Ferrari, Gaetano Dilevrano, Lorenzo Beatrici, Christian Girardi, G. Pellegrino","doi":"10.1109/WEMDCD55819.2023.10110927","DOIUrl":null,"url":null,"abstract":"This paper deals with the design and scaling of ferrite-assisted synchronous reluctance machines for lifting applications, to quickly obtain a family of motors from an initial reference design. A simple thermal network is introduced to describe the analysed non-ventilated motors. Thus, the scaling laws of the thermal network are also introduced, after calibration using the through heating test of the reference motor. The paper demonstrates how to scale the motor and converter size up or down to cover a wide range of lifting system applications. The turns versus length design plane is employed to select the correct number of turns and minimize the stack length of the scaled machine at the same time. Last, demagnetization, notably a downside of ferrite permanent magnets, is covered with dedicated magnetostatic simulations. Overall, the proposed design process aims at being a guideline for designing a series of e-motors in seamless computational time.","PeriodicalId":192269,"journal":{"name":"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling of Ferrite-assisted Synchronous Reluctance Machines for Lifting Systems\",\"authors\":\"P. Ragazzo, S. Ferrari, Gaetano Dilevrano, Lorenzo Beatrici, Christian Girardi, G. Pellegrino\",\"doi\":\"10.1109/WEMDCD55819.2023.10110927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the design and scaling of ferrite-assisted synchronous reluctance machines for lifting applications, to quickly obtain a family of motors from an initial reference design. A simple thermal network is introduced to describe the analysed non-ventilated motors. Thus, the scaling laws of the thermal network are also introduced, after calibration using the through heating test of the reference motor. The paper demonstrates how to scale the motor and converter size up or down to cover a wide range of lifting system applications. The turns versus length design plane is employed to select the correct number of turns and minimize the stack length of the scaled machine at the same time. Last, demagnetization, notably a downside of ferrite permanent magnets, is covered with dedicated magnetostatic simulations. Overall, the proposed design process aims at being a guideline for designing a series of e-motors in seamless computational time.\",\"PeriodicalId\":192269,\"journal\":{\"name\":\"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WEMDCD55819.2023.10110927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WEMDCD55819.2023.10110927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaling of Ferrite-assisted Synchronous Reluctance Machines for Lifting Systems
This paper deals with the design and scaling of ferrite-assisted synchronous reluctance machines for lifting applications, to quickly obtain a family of motors from an initial reference design. A simple thermal network is introduced to describe the analysed non-ventilated motors. Thus, the scaling laws of the thermal network are also introduced, after calibration using the through heating test of the reference motor. The paper demonstrates how to scale the motor and converter size up or down to cover a wide range of lifting system applications. The turns versus length design plane is employed to select the correct number of turns and minimize the stack length of the scaled machine at the same time. Last, demagnetization, notably a downside of ferrite permanent magnets, is covered with dedicated magnetostatic simulations. Overall, the proposed design process aims at being a guideline for designing a series of e-motors in seamless computational time.