{"title":"Mg-Wc纳米复合材料高温摩擦学性能优化研究","authors":"Sudip Banerjee, S. Poria, G. Sutradhar, P. Sahoo","doi":"10.4018/ijseims.2020010103","DOIUrl":null,"url":null,"abstract":"The present investigation scrutinizes the role of wt.% of WC (0, 0.5, 1, 1.5 and 2%), operating temperature (50, 100, 150, 200 and 250°C) and load (20, 30 and 40N) on wear rate and coefficient of friction (COF) of Mg-WC nanocomposites. A multilevel full factorial design is considered to optimize the response variables. Mg-WC nanocomposites are synthesized through ultrasonic vibration assisted stir casting method. Tribological tests are performed in a pin-on-disk tribotester at dry sliding condition. Optical microscope and scanning electron microscope (SEM) are used to visualize the microstructural phases and distribution of reinforcements respectively. Main effect plots and interaction plots are analyzed to find the effect of selected parameters and their interactions. Analysis of variance (ANOVA) is also carried out for response variables to find the significant parameters. Linear regression equations are also generated to relate the output and input parameters. Worn surfaces are studied with the help of SEM images to examine the wear mechanisms.","PeriodicalId":145165,"journal":{"name":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization of Tribological Behavior of Mg-Wc Nanocomposites at Elevated Temperature\",\"authors\":\"Sudip Banerjee, S. Poria, G. Sutradhar, P. Sahoo\",\"doi\":\"10.4018/ijseims.2020010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present investigation scrutinizes the role of wt.% of WC (0, 0.5, 1, 1.5 and 2%), operating temperature (50, 100, 150, 200 and 250°C) and load (20, 30 and 40N) on wear rate and coefficient of friction (COF) of Mg-WC nanocomposites. A multilevel full factorial design is considered to optimize the response variables. Mg-WC nanocomposites are synthesized through ultrasonic vibration assisted stir casting method. Tribological tests are performed in a pin-on-disk tribotester at dry sliding condition. Optical microscope and scanning electron microscope (SEM) are used to visualize the microstructural phases and distribution of reinforcements respectively. Main effect plots and interaction plots are analyzed to find the effect of selected parameters and their interactions. Analysis of variance (ANOVA) is also carried out for response variables to find the significant parameters. Linear regression equations are also generated to relate the output and input parameters. Worn surfaces are studied with the help of SEM images to examine the wear mechanisms.\",\"PeriodicalId\":145165,\"journal\":{\"name\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijseims.2020010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijseims.2020010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Tribological Behavior of Mg-Wc Nanocomposites at Elevated Temperature
The present investigation scrutinizes the role of wt.% of WC (0, 0.5, 1, 1.5 and 2%), operating temperature (50, 100, 150, 200 and 250°C) and load (20, 30 and 40N) on wear rate and coefficient of friction (COF) of Mg-WC nanocomposites. A multilevel full factorial design is considered to optimize the response variables. Mg-WC nanocomposites are synthesized through ultrasonic vibration assisted stir casting method. Tribological tests are performed in a pin-on-disk tribotester at dry sliding condition. Optical microscope and scanning electron microscope (SEM) are used to visualize the microstructural phases and distribution of reinforcements respectively. Main effect plots and interaction plots are analyzed to find the effect of selected parameters and their interactions. Analysis of variance (ANOVA) is also carried out for response variables to find the significant parameters. Linear regression equations are also generated to relate the output and input parameters. Worn surfaces are studied with the help of SEM images to examine the wear mechanisms.