Sander P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg
{"title":"基于稳定准则的弹道分割框架","authors":"Sander P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg","doi":"10.1145/2666310.2666415","DOIUrl":null,"url":null,"abstract":"We present an algorithmic framework for criteria-based segmentation of trajectories that can efficiently process a large class of criteria. Criteria-based segmentation is the problem of subdividing a trajectory into a small number of parts such that each part satisfies a global criterion. Our framework can handle criteria that are stable, in the sense that these do not change their validity along the trajectory very often. This includes both increasing and decreasing monotone criteria. Our framework takes O(n log n) time for preprocessing and computation, where n is the number of data points. It surpasses the two previous algorithmic frameworks on criteria-based segmentation, which could only handle decreasing monotone criteria, or had a quadratic running time, respectively. Furthermore, we develop an efficient data structure for interactive parameter selection, and provide mechanisms to improve the exact position of break points in the segmentation. We demonstrate and evaluate our framework by performing case studies on real-world data sets.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A framework for trajectory segmentation by stable criteria\",\"authors\":\"Sander P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg\",\"doi\":\"10.1145/2666310.2666415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithmic framework for criteria-based segmentation of trajectories that can efficiently process a large class of criteria. Criteria-based segmentation is the problem of subdividing a trajectory into a small number of parts such that each part satisfies a global criterion. Our framework can handle criteria that are stable, in the sense that these do not change their validity along the trajectory very often. This includes both increasing and decreasing monotone criteria. Our framework takes O(n log n) time for preprocessing and computation, where n is the number of data points. It surpasses the two previous algorithmic frameworks on criteria-based segmentation, which could only handle decreasing monotone criteria, or had a quadratic running time, respectively. Furthermore, we develop an efficient data structure for interactive parameter selection, and provide mechanisms to improve the exact position of break points in the segmentation. We demonstrate and evaluate our framework by performing case studies on real-world data sets.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A framework for trajectory segmentation by stable criteria
We present an algorithmic framework for criteria-based segmentation of trajectories that can efficiently process a large class of criteria. Criteria-based segmentation is the problem of subdividing a trajectory into a small number of parts such that each part satisfies a global criterion. Our framework can handle criteria that are stable, in the sense that these do not change their validity along the trajectory very often. This includes both increasing and decreasing monotone criteria. Our framework takes O(n log n) time for preprocessing and computation, where n is the number of data points. It surpasses the two previous algorithmic frameworks on criteria-based segmentation, which could only handle decreasing monotone criteria, or had a quadratic running time, respectively. Furthermore, we develop an efficient data structure for interactive parameter selection, and provide mechanisms to improve the exact position of break points in the segmentation. We demonstrate and evaluate our framework by performing case studies on real-world data sets.