基于稳定准则的弹道分割框架

Sander P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg
{"title":"基于稳定准则的弹道分割框架","authors":"Sander P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg","doi":"10.1145/2666310.2666415","DOIUrl":null,"url":null,"abstract":"We present an algorithmic framework for criteria-based segmentation of trajectories that can efficiently process a large class of criteria. Criteria-based segmentation is the problem of subdividing a trajectory into a small number of parts such that each part satisfies a global criterion. Our framework can handle criteria that are stable, in the sense that these do not change their validity along the trajectory very often. This includes both increasing and decreasing monotone criteria. Our framework takes O(n log n) time for preprocessing and computation, where n is the number of data points. It surpasses the two previous algorithmic frameworks on criteria-based segmentation, which could only handle decreasing monotone criteria, or had a quadratic running time, respectively. Furthermore, we develop an efficient data structure for interactive parameter selection, and provide mechanisms to improve the exact position of break points in the segmentation. We demonstrate and evaluate our framework by performing case studies on real-world data sets.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A framework for trajectory segmentation by stable criteria\",\"authors\":\"Sander P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg\",\"doi\":\"10.1145/2666310.2666415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithmic framework for criteria-based segmentation of trajectories that can efficiently process a large class of criteria. Criteria-based segmentation is the problem of subdividing a trajectory into a small number of parts such that each part satisfies a global criterion. Our framework can handle criteria that are stable, in the sense that these do not change their validity along the trajectory very often. This includes both increasing and decreasing monotone criteria. Our framework takes O(n log n) time for preprocessing and computation, where n is the number of data points. It surpasses the two previous algorithmic frameworks on criteria-based segmentation, which could only handle decreasing monotone criteria, or had a quadratic running time, respectively. Furthermore, we develop an efficient data structure for interactive parameter selection, and provide mechanisms to improve the exact position of break points in the segmentation. We demonstrate and evaluate our framework by performing case studies on real-world data sets.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们提出了一种基于准则的轨迹分割算法框架,可以有效地处理大类准则。基于准则的分割是将轨迹细分为少量部分,使每个部分满足一个全局准则的问题。我们的框架可以处理稳定的标准,在这个意义上,这些标准不会沿着轨迹经常改变它们的有效性。这包括增加和减少单调标准。我们的框架需要O(n log n)时间进行预处理和计算,其中n是数据点的数量。它超越了之前两种基于条件分割的算法框架,这两种算法框架分别只能处理递减单调的标准,或具有二次的运行时间。此外,我们开发了一种有效的交互式参数选择数据结构,并提供了提高分割中断点精确位置的机制。我们通过对真实世界的数据集进行案例研究来演示和评估我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for trajectory segmentation by stable criteria
We present an algorithmic framework for criteria-based segmentation of trajectories that can efficiently process a large class of criteria. Criteria-based segmentation is the problem of subdividing a trajectory into a small number of parts such that each part satisfies a global criterion. Our framework can handle criteria that are stable, in the sense that these do not change their validity along the trajectory very often. This includes both increasing and decreasing monotone criteria. Our framework takes O(n log n) time for preprocessing and computation, where n is the number of data points. It surpasses the two previous algorithmic frameworks on criteria-based segmentation, which could only handle decreasing monotone criteria, or had a quadratic running time, respectively. Furthermore, we develop an efficient data structure for interactive parameter selection, and provide mechanisms to improve the exact position of break points in the segmentation. We demonstrate and evaluate our framework by performing case studies on real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信