未知干扰下飞机航迹角的自适应离散时间动态曲面控制

Huan He, Xiaodi Xu, Yilin Jia, Cheng Zhong, Guoqiang Zhu, Xiuyu Zhang
{"title":"未知干扰下飞机航迹角的自适应离散时间动态曲面控制","authors":"Huan He, Xiaodi Xu, Yilin Jia, Cheng Zhong, Guoqiang Zhu, Xiuyu Zhang","doi":"10.1109/ICICIP53388.2021.9642183","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of tracking control system of the aircraft flight path angle, an adaptive discrete time dynamic surface control algorithm is proposed. Firstly, introducing the concept of discrete time system, the sampling signal form used is easy to suppress noise, and the impact of delay on the system is reduced through sampling. Afterwards, the dynamic surface control and the first-order digital low pass filter is introduced which making both controller and parameters easier and avoiding differential explosion in traditional backstepping method. Furthermorethe RBF Neural Network is introduced to approximate the unknown parameters and uncertain items in the system and the unknown interference part of the externa, which reduces the requirements on the system and structure. By using the Lyapunov function theory, it is proved that the closed-loop system is semi-globally ultimately uniformly bounded. Finally, simulation verification is performed and the results show that the proposed control algorithm can not only make the flight path angle track the reference trajectory, but also has a certain degree of robustness to unknown system parameters and unknown external interference.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Discrete Time Dynamic Surface Control for Aircraft Flight Path Angle with Unknown Disturbances\",\"authors\":\"Huan He, Xiaodi Xu, Yilin Jia, Cheng Zhong, Guoqiang Zhu, Xiuyu Zhang\",\"doi\":\"10.1109/ICICIP53388.2021.9642183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of tracking control system of the aircraft flight path angle, an adaptive discrete time dynamic surface control algorithm is proposed. Firstly, introducing the concept of discrete time system, the sampling signal form used is easy to suppress noise, and the impact of delay on the system is reduced through sampling. Afterwards, the dynamic surface control and the first-order digital low pass filter is introduced which making both controller and parameters easier and avoiding differential explosion in traditional backstepping method. Furthermorethe RBF Neural Network is introduced to approximate the unknown parameters and uncertain items in the system and the unknown interference part of the externa, which reduces the requirements on the system and structure. By using the Lyapunov function theory, it is proved that the closed-loop system is semi-globally ultimately uniformly bounded. Finally, simulation verification is performed and the results show that the proposed control algorithm can not only make the flight path angle track the reference trajectory, but also has a certain degree of robustness to unknown system parameters and unknown external interference.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对飞机航迹角跟踪控制系统存在的问题,提出了一种自适应离散时间动态面控制算法。首先,引入离散时间系统的概念,采用易于抑制噪声的采样信号形式,通过采样降低了时延对系统的影响。然后,引入了动态曲面控制和一阶数字低通滤波器,使控制器和参数都变得简单,避免了传统反演方法的差分爆炸。引入RBF神经网络对系统中的未知参数和不确定项以及外部未知干扰部分进行逼近,降低了对系统和结构的要求。利用李雅普诺夫函数理论,证明了闭环系统是半全局最终一致有界的。最后进行了仿真验证,结果表明所提出的控制算法不仅能使航迹角跟踪参考轨迹,而且对未知系统参数和未知外部干扰具有一定的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Discrete Time Dynamic Surface Control for Aircraft Flight Path Angle with Unknown Disturbances
Aiming at the problem of tracking control system of the aircraft flight path angle, an adaptive discrete time dynamic surface control algorithm is proposed. Firstly, introducing the concept of discrete time system, the sampling signal form used is easy to suppress noise, and the impact of delay on the system is reduced through sampling. Afterwards, the dynamic surface control and the first-order digital low pass filter is introduced which making both controller and parameters easier and avoiding differential explosion in traditional backstepping method. Furthermorethe RBF Neural Network is introduced to approximate the unknown parameters and uncertain items in the system and the unknown interference part of the externa, which reduces the requirements on the system and structure. By using the Lyapunov function theory, it is proved that the closed-loop system is semi-globally ultimately uniformly bounded. Finally, simulation verification is performed and the results show that the proposed control algorithm can not only make the flight path angle track the reference trajectory, but also has a certain degree of robustness to unknown system parameters and unknown external interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信