QoS/QoE模型识别的强化学习方法

S. Canale, F. Delli Priscoli, S. Monaco, L. Palagi, V. Suraci
{"title":"QoS/QoE模型识别的强化学习方法","authors":"S. Canale, F. Delli Priscoli, S. Monaco, L. Palagi, V. Suraci","doi":"10.1109/CHICC.2015.7259941","DOIUrl":null,"url":null,"abstract":"In the last decade, researchers has focused their studies on the mathematical relation between the Quality of Service (QoS) and the user Quality of Experience (QoE). This paper investigates the problem of modelling the user QoE feedback in the next generation networks. The problem has been formulated and solved using a reinforcement learning technique. The proposed approach is innovative since it does not require an explicit knowledge of the mathematical model describing the network dynamics or the QoS/QoE relationship since it is learnt on-line. Simulation results shows that the proposed solution can adapt dynamically to the user behavior.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A reinforcement learning approach for QoS/QoE model identification\",\"authors\":\"S. Canale, F. Delli Priscoli, S. Monaco, L. Palagi, V. Suraci\",\"doi\":\"10.1109/CHICC.2015.7259941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, researchers has focused their studies on the mathematical relation between the Quality of Service (QoS) and the user Quality of Experience (QoE). This paper investigates the problem of modelling the user QoE feedback in the next generation networks. The problem has been formulated and solved using a reinforcement learning technique. The proposed approach is innovative since it does not require an explicit knowledge of the mathematical model describing the network dynamics or the QoS/QoE relationship since it is learnt on-line. Simulation results shows that the proposed solution can adapt dynamically to the user behavior.\",\"PeriodicalId\":421276,\"journal\":{\"name\":\"2015 34th Chinese Control Conference (CCC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 34th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2015.7259941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7259941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近十年来,研究人员主要关注服务质量(QoS)与用户体验质量(QoE)之间的数学关系。研究了下一代网络中用户QoE反馈的建模问题。这个问题已经被表述出来,并使用强化学习技术来解决。所提出的方法是创新的,因为它不需要对描述网络动态或QoS/QoE关系的数学模型有明确的了解,因为它是在线学习的。仿真结果表明,该方法能够动态适应用户行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reinforcement learning approach for QoS/QoE model identification
In the last decade, researchers has focused their studies on the mathematical relation between the Quality of Service (QoS) and the user Quality of Experience (QoE). This paper investigates the problem of modelling the user QoE feedback in the next generation networks. The problem has been formulated and solved using a reinforcement learning technique. The proposed approach is innovative since it does not require an explicit knowledge of the mathematical model describing the network dynamics or the QoS/QoE relationship since it is learnt on-line. Simulation results shows that the proposed solution can adapt dynamically to the user behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信