三维激光雷达数据的鲁棒目标分割与参数化

A. Kapp
{"title":"三维激光雷达数据的鲁棒目标分割与参数化","authors":"A. Kapp","doi":"10.1109/IVS.2005.1505184","DOIUrl":null,"url":null,"abstract":"This article addresses the problem of robust signal processing of 3D lidar data prone to noise. After describing the characteristics of the lidar data given we describe how the data can be segmented in a robust manner. The approach is based on edge detection followed by region growing. We show how the segments can be described using parametric models. In the final step the segments are circumscribed using appropriate bounding objects. We motivate the individual steps of our approach and light up the mathematical background.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust object segmentation and parametrization of 3D lidar data\",\"authors\":\"A. Kapp\",\"doi\":\"10.1109/IVS.2005.1505184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the problem of robust signal processing of 3D lidar data prone to noise. After describing the characteristics of the lidar data given we describe how the data can be segmented in a robust manner. The approach is based on edge detection followed by region growing. We show how the segments can be described using parametric models. In the final step the segments are circumscribed using appropriate bounding objects. We motivate the individual steps of our approach and light up the mathematical background.\",\"PeriodicalId\":386189,\"journal\":{\"name\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2005.1505184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文解决了三维激光雷达数据易受噪声影响的鲁棒信号处理问题。在描述了给出的激光雷达数据的特征之后,我们描述了如何以稳健的方式对数据进行分割。该方法基于边缘检测和区域生长。我们展示了如何使用参数模型来描述片段。在最后一步中,使用适当的边界对象来限定区段。我们激励我们的方法的个别步骤,并照亮数学背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust object segmentation and parametrization of 3D lidar data
This article addresses the problem of robust signal processing of 3D lidar data prone to noise. After describing the characteristics of the lidar data given we describe how the data can be segmented in a robust manner. The approach is based on edge detection followed by region growing. We show how the segments can be described using parametric models. In the final step the segments are circumscribed using appropriate bounding objects. We motivate the individual steps of our approach and light up the mathematical background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信