V. Shnayder, D. Parkes, Vikas Kawadia, Jeremy Hoon
{"title":"动态带宽共享的真实优先级","authors":"V. Shnayder, D. Parkes, Vikas Kawadia, Jeremy Hoon","doi":"10.1145/2632951.2632956","DOIUrl":null,"url":null,"abstract":"We design a protocol for dynamic prioritization of data on shared routers such as untethered 3G/4G devices. The mechanism prioritizes bandwidth in favor of users with the highest value, and is incentive compatible, so that users can simply report their true values for network access. A revenue pooling mechanism also aligns incentives for sellers, so that they will choose to use prioritization methods that retain the incentive properties on the buy-side. In this way, the design allows for an open architecture. In addition to revenue pooling, the technical contribution is to identify a class of stochastic demand models and a prioritization scheme that provides allocation monotonicity. Simulation results confirm efficiency gains from dynamic prioritization relative to prior methods, as well as the effectiveness of revenue pooling.","PeriodicalId":425643,"journal":{"name":"ACM Interational Symposium on Mobile Ad Hoc Networking and Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Truthful prioritization for dynamic bandwidth sharing\",\"authors\":\"V. Shnayder, D. Parkes, Vikas Kawadia, Jeremy Hoon\",\"doi\":\"10.1145/2632951.2632956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a protocol for dynamic prioritization of data on shared routers such as untethered 3G/4G devices. The mechanism prioritizes bandwidth in favor of users with the highest value, and is incentive compatible, so that users can simply report their true values for network access. A revenue pooling mechanism also aligns incentives for sellers, so that they will choose to use prioritization methods that retain the incentive properties on the buy-side. In this way, the design allows for an open architecture. In addition to revenue pooling, the technical contribution is to identify a class of stochastic demand models and a prioritization scheme that provides allocation monotonicity. Simulation results confirm efficiency gains from dynamic prioritization relative to prior methods, as well as the effectiveness of revenue pooling.\",\"PeriodicalId\":425643,\"journal\":{\"name\":\"ACM Interational Symposium on Mobile Ad Hoc Networking and Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Interational Symposium on Mobile Ad Hoc Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632951.2632956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Interational Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632951.2632956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Truthful prioritization for dynamic bandwidth sharing
We design a protocol for dynamic prioritization of data on shared routers such as untethered 3G/4G devices. The mechanism prioritizes bandwidth in favor of users with the highest value, and is incentive compatible, so that users can simply report their true values for network access. A revenue pooling mechanism also aligns incentives for sellers, so that they will choose to use prioritization methods that retain the incentive properties on the buy-side. In this way, the design allows for an open architecture. In addition to revenue pooling, the technical contribution is to identify a class of stochastic demand models and a prioritization scheme that provides allocation monotonicity. Simulation results confirm efficiency gains from dynamic prioritization relative to prior methods, as well as the effectiveness of revenue pooling.