{"title":"新闻推荐中的过滤气泡演化与极化","authors":"Han Zhang, Ziwei Zhu, James Caverlee","doi":"10.48550/arXiv.2301.10926","DOIUrl":null,"url":null,"abstract":"Recent work in news recommendation has demonstrated that recommenders can over-expose users to articles that support their pre-existing opinions. However, most existing work focuses on a static setting or over a short-time window, leaving open questions about the long-term and dynamic impacts of news recommendations. In this paper, we explore these dynamic impacts through a systematic study of three research questions: 1) How do the news reading behaviors of users change after repeated long-term interactions with recommenders? 2) How do the inherent preferences of users change over time in such a dynamic recommender system? 3) Can the existing SOTA static method alleviate the problem in the dynamic environment? Concretely, we conduct a comprehensive data-driven study through simulation experiments of political polarization in news recommendations based on 40,000 annotated news articles. We find that users are rapidly exposed to more extreme content as the recommender evolves. We also find that a calibration-based intervention can slow down this polarization, but leaves open significant opportunities for future improvements","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolution of Filter Bubbles and Polarization in News Recommendation\",\"authors\":\"Han Zhang, Ziwei Zhu, James Caverlee\",\"doi\":\"10.48550/arXiv.2301.10926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work in news recommendation has demonstrated that recommenders can over-expose users to articles that support their pre-existing opinions. However, most existing work focuses on a static setting or over a short-time window, leaving open questions about the long-term and dynamic impacts of news recommendations. In this paper, we explore these dynamic impacts through a systematic study of three research questions: 1) How do the news reading behaviors of users change after repeated long-term interactions with recommenders? 2) How do the inherent preferences of users change over time in such a dynamic recommender system? 3) Can the existing SOTA static method alleviate the problem in the dynamic environment? Concretely, we conduct a comprehensive data-driven study through simulation experiments of political polarization in news recommendations based on 40,000 annotated news articles. We find that users are rapidly exposed to more extreme content as the recommender evolves. We also find that a calibration-based intervention can slow down this polarization, but leaves open significant opportunities for future improvements\",\"PeriodicalId\":126309,\"journal\":{\"name\":\"European Conference on Information Retrieval\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.10926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.10926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolution of Filter Bubbles and Polarization in News Recommendation
Recent work in news recommendation has demonstrated that recommenders can over-expose users to articles that support their pre-existing opinions. However, most existing work focuses on a static setting or over a short-time window, leaving open questions about the long-term and dynamic impacts of news recommendations. In this paper, we explore these dynamic impacts through a systematic study of three research questions: 1) How do the news reading behaviors of users change after repeated long-term interactions with recommenders? 2) How do the inherent preferences of users change over time in such a dynamic recommender system? 3) Can the existing SOTA static method alleviate the problem in the dynamic environment? Concretely, we conduct a comprehensive data-driven study through simulation experiments of political polarization in news recommendations based on 40,000 annotated news articles. We find that users are rapidly exposed to more extreme content as the recommender evolves. We also find that a calibration-based intervention can slow down this polarization, but leaves open significant opportunities for future improvements