{"title":"监督自动驾驶汽车:自动驾驶过程中的情况感知和疲劳","authors":"Angus McKerral, Nathan Boyce, K. Pammer","doi":"10.1145/3349263.3351310","DOIUrl":null,"url":null,"abstract":"The capacity for human drivers to resume control from an automated vehicle remains a central focus of human factors research. Physiological measures promise to allow the vehicle system to determine when a driver is in a ready-state for transition of control, particularly for level 3 automation and above. We employ an adapted measure of Situation Awareness (SA) to assess the quality of driver SA following an extended period of simulated level 3 automated driving. It is hypothesised that a within-subjects design will demonstrate increasing passive fatigue to be predictive of reduced SA following a takeover request. Participants were also randomly allocated to one of two separate conditions in which supervising drivers were either permitted to, or prohibited from the use of non-driving related tasks (NDRT) during automated driving, to investigate a potential avenue for targeted SA enhancement through deliberate NDRT engagement. Preliminary results provide tentative support for our hypotheses.","PeriodicalId":237150,"journal":{"name":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Supervising the self-driving car: situation awareness and fatigue during automated driving\",\"authors\":\"Angus McKerral, Nathan Boyce, K. Pammer\",\"doi\":\"10.1145/3349263.3351310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capacity for human drivers to resume control from an automated vehicle remains a central focus of human factors research. Physiological measures promise to allow the vehicle system to determine when a driver is in a ready-state for transition of control, particularly for level 3 automation and above. We employ an adapted measure of Situation Awareness (SA) to assess the quality of driver SA following an extended period of simulated level 3 automated driving. It is hypothesised that a within-subjects design will demonstrate increasing passive fatigue to be predictive of reduced SA following a takeover request. Participants were also randomly allocated to one of two separate conditions in which supervising drivers were either permitted to, or prohibited from the use of non-driving related tasks (NDRT) during automated driving, to investigate a potential avenue for targeted SA enhancement through deliberate NDRT engagement. Preliminary results provide tentative support for our hypotheses.\",\"PeriodicalId\":237150,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349263.3351310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349263.3351310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supervising the self-driving car: situation awareness and fatigue during automated driving
The capacity for human drivers to resume control from an automated vehicle remains a central focus of human factors research. Physiological measures promise to allow the vehicle system to determine when a driver is in a ready-state for transition of control, particularly for level 3 automation and above. We employ an adapted measure of Situation Awareness (SA) to assess the quality of driver SA following an extended period of simulated level 3 automated driving. It is hypothesised that a within-subjects design will demonstrate increasing passive fatigue to be predictive of reduced SA following a takeover request. Participants were also randomly allocated to one of two separate conditions in which supervising drivers were either permitted to, or prohibited from the use of non-driving related tasks (NDRT) during automated driving, to investigate a potential avenue for targeted SA enhancement through deliberate NDRT engagement. Preliminary results provide tentative support for our hypotheses.