基于神经模糊逻辑的迭代图像融合及其应用

D. Srinivasa Rao, M. Seetha, M. Hazarath
{"title":"基于神经模糊逻辑的迭代图像融合及其应用","authors":"D. Srinivasa Rao, M. Seetha, M. Hazarath","doi":"10.1109/MVIP.2012.6428775","DOIUrl":null,"url":null,"abstract":"Image fusion to reduce uncertainty and redundancy while extracting all the useful information from the source images. Image fusion process is required for different applications, medical imaging, remote sensing, machine vision, biometrics and military applications. In this paper, an iterative neuro fuzzy logic approach utilized to fuse images from different sensors, in order to enhance visualization. The proposed work further explores comparison between neuro fuzzy based image fusion and iterative neuro fuzzy fusion technique along with quality evaluation metrics for image fusion like image quality index, mutual information measure, fusion factor, fusion symmetry, fusion index, root mean square error, peak signal to noise ratio, entropy, correlation coefficient and spatial frequency. Experimental results obtained from proposed method prove that the use of the iterative neuro fuzzy fusion can efficiently preserve the spectral information while improving the spatial resolution of the remote sensing and medical imaging.","PeriodicalId":170271,"journal":{"name":"2012 International Conference on Machine Vision and Image Processing (MVIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Iterative image fusion using neuro fuzzy logic and applications\",\"authors\":\"D. Srinivasa Rao, M. Seetha, M. Hazarath\",\"doi\":\"10.1109/MVIP.2012.6428775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image fusion to reduce uncertainty and redundancy while extracting all the useful information from the source images. Image fusion process is required for different applications, medical imaging, remote sensing, machine vision, biometrics and military applications. In this paper, an iterative neuro fuzzy logic approach utilized to fuse images from different sensors, in order to enhance visualization. The proposed work further explores comparison between neuro fuzzy based image fusion and iterative neuro fuzzy fusion technique along with quality evaluation metrics for image fusion like image quality index, mutual information measure, fusion factor, fusion symmetry, fusion index, root mean square error, peak signal to noise ratio, entropy, correlation coefficient and spatial frequency. Experimental results obtained from proposed method prove that the use of the iterative neuro fuzzy fusion can efficiently preserve the spectral information while improving the spatial resolution of the remote sensing and medical imaging.\",\"PeriodicalId\":170271,\"journal\":{\"name\":\"2012 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP.2012.6428775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP.2012.6428775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

图像融合,减少不确定性和冗余,同时从源图像中提取所有有用信息。不同的应用需要图像融合处理,如医学成像、遥感、机器视觉、生物识别和军事应用。本文采用迭代神经模糊逻辑方法对不同传感器的图像进行融合,以增强视觉效果。本文进一步探讨了基于神经模糊的图像融合与迭代神经模糊融合技术的比较,以及图像质量指标、互信息测度、融合因子、融合对称性、融合指数、均方根误差、峰值信噪比、熵、相关系数和空间频率等图像融合质量评价指标。实验结果表明,采用迭代神经模糊融合方法可以有效地保留光谱信息,同时提高遥感和医学成像的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative image fusion using neuro fuzzy logic and applications
Image fusion to reduce uncertainty and redundancy while extracting all the useful information from the source images. Image fusion process is required for different applications, medical imaging, remote sensing, machine vision, biometrics and military applications. In this paper, an iterative neuro fuzzy logic approach utilized to fuse images from different sensors, in order to enhance visualization. The proposed work further explores comparison between neuro fuzzy based image fusion and iterative neuro fuzzy fusion technique along with quality evaluation metrics for image fusion like image quality index, mutual information measure, fusion factor, fusion symmetry, fusion index, root mean square error, peak signal to noise ratio, entropy, correlation coefficient and spatial frequency. Experimental results obtained from proposed method prove that the use of the iterative neuro fuzzy fusion can efficiently preserve the spectral information while improving the spatial resolution of the remote sensing and medical imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信