{"title":"拟单位磁盘图的按需无信标平面主干构造","authors":"Florentin Neumann, Hannes Frey","doi":"10.1109/MASS.2015.63","DOIUrl":null,"url":null,"abstract":"Beaconless topology control algorithms reduce message overhead of local topology constructions compared to conventional (beacon-based) local approaches by avoiding maintenance of neighborhood tables. Moreover, they construct a node's adjacency in the desired topology on demand and only locally, i.e., Do not require network-wide operation. In this work, we present a beaconless topology control algorithm which enables a node to reactively construct a planar backbone graph in its geographic vicinity. This backbone graph is a constant node degree, constant stretch hop-spanner for the input quasi unit disk graph. Our contribution is novel, since all known algorithms with comparable outputs require maintenance of neighborhood tables and are designed for network-wide operation. In addition, it is of significance since there are several applications of it, e.g., In the context of geographic unicast and multicast routing with guaranteed delivery.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Demand Beaconless Planar Backbone Construction for Quasi Unit Disk Graphs\",\"authors\":\"Florentin Neumann, Hannes Frey\",\"doi\":\"10.1109/MASS.2015.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beaconless topology control algorithms reduce message overhead of local topology constructions compared to conventional (beacon-based) local approaches by avoiding maintenance of neighborhood tables. Moreover, they construct a node's adjacency in the desired topology on demand and only locally, i.e., Do not require network-wide operation. In this work, we present a beaconless topology control algorithm which enables a node to reactively construct a planar backbone graph in its geographic vicinity. This backbone graph is a constant node degree, constant stretch hop-spanner for the input quasi unit disk graph. Our contribution is novel, since all known algorithms with comparable outputs require maintenance of neighborhood tables and are designed for network-wide operation. In addition, it is of significance since there are several applications of it, e.g., In the context of geographic unicast and multicast routing with guaranteed delivery.\",\"PeriodicalId\":436496,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2015.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Demand Beaconless Planar Backbone Construction for Quasi Unit Disk Graphs
Beaconless topology control algorithms reduce message overhead of local topology constructions compared to conventional (beacon-based) local approaches by avoiding maintenance of neighborhood tables. Moreover, they construct a node's adjacency in the desired topology on demand and only locally, i.e., Do not require network-wide operation. In this work, we present a beaconless topology control algorithm which enables a node to reactively construct a planar backbone graph in its geographic vicinity. This backbone graph is a constant node degree, constant stretch hop-spanner for the input quasi unit disk graph. Our contribution is novel, since all known algorithms with comparable outputs require maintenance of neighborhood tables and are designed for network-wide operation. In addition, it is of significance since there are several applications of it, e.g., In the context of geographic unicast and multicast routing with guaranteed delivery.