{"title":"基于社会的协同过滤的多样性和新颖性","authors":"Dimitris Sacharidis","doi":"10.1145/3320435.3320479","DOIUrl":null,"url":null,"abstract":"Social-based recommenders seek to exploit the mechanisms of homophily and influence observed in social networks in order to provide more accurate recommendations. The way they achieve this is by enforcing similar preferences among users that are socially connected. It is thus reasonable to question whether such approaches lead to the formation of echo chambers, i.e., social groups with a narrow set of preferences and which receive recommendations with low diversity and novelty. This work studies this research question and quantifies the diversity and novelty of existing methods. An important finding is that it is possible to increase accuracy without sacrificing diversity and novelty.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Diversity and Novelty in Social-Based Collaborative Filtering\",\"authors\":\"Dimitris Sacharidis\",\"doi\":\"10.1145/3320435.3320479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social-based recommenders seek to exploit the mechanisms of homophily and influence observed in social networks in order to provide more accurate recommendations. The way they achieve this is by enforcing similar preferences among users that are socially connected. It is thus reasonable to question whether such approaches lead to the formation of echo chambers, i.e., social groups with a narrow set of preferences and which receive recommendations with low diversity and novelty. This work studies this research question and quantifies the diversity and novelty of existing methods. An important finding is that it is possible to increase accuracy without sacrificing diversity and novelty.\",\"PeriodicalId\":254537,\"journal\":{\"name\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3320435.3320479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diversity and Novelty in Social-Based Collaborative Filtering
Social-based recommenders seek to exploit the mechanisms of homophily and influence observed in social networks in order to provide more accurate recommendations. The way they achieve this is by enforcing similar preferences among users that are socially connected. It is thus reasonable to question whether such approaches lead to the formation of echo chambers, i.e., social groups with a narrow set of preferences and which receive recommendations with low diversity and novelty. This work studies this research question and quantifies the diversity and novelty of existing methods. An important finding is that it is possible to increase accuracy without sacrificing diversity and novelty.