基于模拟的云工作负荷预测

G. Kecskeméti, A. Kertész, Z. Németh
{"title":"基于模拟的云工作负荷预测","authors":"G. Kecskeméti, A. Kertész, Z. Németh","doi":"10.1145/3075564.3075589","DOIUrl":null,"url":null,"abstract":"Clouds hide the complexity of maintaining a physical infrastructure with a disadvantage: they also hide their internal workings. Should users need to know about these details e.g., to increase the reliability or performance of their applications, they would need to detect slight behavioural changes in the underlying system. Existing solutions for such purposes offer limited capabilities. This paper proposes a technique for predicting background workload by means of simulations that are providing knowledge of the underlying clouds to support activities like cloud orchestration or workflow enactment. We propose these predictions to select more suitable execution environments for scientific workflows. We validate the proposed prediction approach with a biochemical application.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cloud Workload Prediction by Means of Simulations\",\"authors\":\"G. Kecskeméti, A. Kertész, Z. Németh\",\"doi\":\"10.1145/3075564.3075589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clouds hide the complexity of maintaining a physical infrastructure with a disadvantage: they also hide their internal workings. Should users need to know about these details e.g., to increase the reliability or performance of their applications, they would need to detect slight behavioural changes in the underlying system. Existing solutions for such purposes offer limited capabilities. This paper proposes a technique for predicting background workload by means of simulations that are providing knowledge of the underlying clouds to support activities like cloud orchestration or workflow enactment. We propose these predictions to select more suitable execution environments for scientific workflows. We validate the proposed prediction approach with a biochemical application.\",\"PeriodicalId\":398898,\"journal\":{\"name\":\"Proceedings of the Computing Frontiers Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Computing Frontiers Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3075564.3075589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

云隐藏了维护物理基础设施的复杂性,但有一个缺点:它们也隐藏了内部工作。如果用户需要了解这些细节,例如,为了提高应用程序的可靠性或性能,他们将需要检测底层系统中的轻微行为变化。用于此类目的的现有解决方案提供的功能有限。本文提出了一种通过模拟来预测后台工作负载的技术,这种模拟提供了底层云的知识,以支持云编排或工作流制定等活动。我们提出这些预测来为科学工作流选择更合适的执行环境。我们用生化应用验证了提出的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud Workload Prediction by Means of Simulations
Clouds hide the complexity of maintaining a physical infrastructure with a disadvantage: they also hide their internal workings. Should users need to know about these details e.g., to increase the reliability or performance of their applications, they would need to detect slight behavioural changes in the underlying system. Existing solutions for such purposes offer limited capabilities. This paper proposes a technique for predicting background workload by means of simulations that are providing knowledge of the underlying clouds to support activities like cloud orchestration or workflow enactment. We propose these predictions to select more suitable execution environments for scientific workflows. We validate the proposed prediction approach with a biochemical application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信