基于改进阈值交叉算法的肌电信号起始和偏移检测

Vasiliki Theofili Nikolaidi, G. Andrikopoulos, Dimitris Tsipianitis, Dimosthenis Kazakos
{"title":"基于改进阈值交叉算法的肌电信号起始和偏移检测","authors":"Vasiliki Theofili Nikolaidi, G. Andrikopoulos, Dimitris Tsipianitis, Dimosthenis Kazakos","doi":"10.1109/MED54222.2022.9837229","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel family of onset and offset detection algorithms for electromyographic (EMG) signals, based on the Teager-Kaiser Energy Operator (TKEO). These algorithms are derived from an existing double-threshold statistical detector, which is modified to use Shifted Skew Log Laplace Distribution (SSLLD) probabilities and likelihoods to take advantage of the improved TKEO SNR ratio. The performance of the proposed algorithms are compared against existing approaches on synthetic EMG signals generated using an heteroscedastic autoregressive Gaussian model.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMG Onset and Offset Detection via a Modified Threshold Crossings Algorithm\",\"authors\":\"Vasiliki Theofili Nikolaidi, G. Andrikopoulos, Dimitris Tsipianitis, Dimosthenis Kazakos\",\"doi\":\"10.1109/MED54222.2022.9837229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a novel family of onset and offset detection algorithms for electromyographic (EMG) signals, based on the Teager-Kaiser Energy Operator (TKEO). These algorithms are derived from an existing double-threshold statistical detector, which is modified to use Shifted Skew Log Laplace Distribution (SSLLD) probabilities and likelihoods to take advantage of the improved TKEO SNR ratio. The performance of the proposed algorithms are compared against existing approaches on synthetic EMG signals generated using an heteroscedastic autoregressive Gaussian model.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种新的基于Teager-Kaiser能量算子(TKEO)的肌电图(EMG)信号的起始和偏移检测算法。这些算法源自现有的双阈值统计检测器,该检测器被修改为使用移位偏对数拉普拉斯分布(SSLLD)概率和似然,以利用改进的TKEO信噪比。将所提算法与现有方法在异方差自回归高斯模型生成的合成肌电信号上的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMG Onset and Offset Detection via a Modified Threshold Crossings Algorithm
In this study, we propose a novel family of onset and offset detection algorithms for electromyographic (EMG) signals, based on the Teager-Kaiser Energy Operator (TKEO). These algorithms are derived from an existing double-threshold statistical detector, which is modified to use Shifted Skew Log Laplace Distribution (SSLLD) probabilities and likelihoods to take advantage of the improved TKEO SNR ratio. The performance of the proposed algorithms are compared against existing approaches on synthetic EMG signals generated using an heteroscedastic autoregressive Gaussian model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信