关于分配格上的对偶化

Khaled M. Elbassioni
{"title":"关于分配格上的对偶化","authors":"Khaled M. Elbassioni","doi":"10.46298/dmtcs.6742","DOIUrl":null,"url":null,"abstract":"Given a partially order set (poset) $P$, and a pair of families of ideals\n$\\mathcal{I}$ and filters $\\mathcal{F}$ in $P$ such that each pair $(I,F)\\in\n\\mathcal{I}\\times\\mathcal{F}$ has a non-empty intersection, the dualization\nproblem over $P$ is to check whether there is an ideal $X$ in $P$ which\nintersects every member of $\\mathcal{F}$ and does not contain any member of\n$\\mathcal{I}$. Equivalently, the problem is to check for a distributive lattice\n$L=L(P)$, given by the poset $P$ of its set of joint-irreducibles, and two\ngiven antichains $\\mathcal{A},\\mathcal{B}\\subseteq L$ such that no\n$a\\in\\mathcal{A}$ is dominated by any $b\\in\\mathcal{B}$, whether $\\mathcal{A}$\nand $\\mathcal{B}$ cover (by domination) the entire lattice. We show that the\nproblem can be solved in quasi-polynomial time in the sizes of $P$,\n$\\mathcal{A}$ and $\\mathcal{B}$, thus answering an open question in Babin and\nKuznetsov (2017). As an application, we show that minimal infrequent closed\nsets of attributes in a rational database, with respect to a given implication\nbase of maximum premise size of one, can be enumerated in incremental\nquasi-polynomial time.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Dualization over Distributive Lattices\",\"authors\":\"Khaled M. Elbassioni\",\"doi\":\"10.46298/dmtcs.6742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a partially order set (poset) $P$, and a pair of families of ideals\\n$\\\\mathcal{I}$ and filters $\\\\mathcal{F}$ in $P$ such that each pair $(I,F)\\\\in\\n\\\\mathcal{I}\\\\times\\\\mathcal{F}$ has a non-empty intersection, the dualization\\nproblem over $P$ is to check whether there is an ideal $X$ in $P$ which\\nintersects every member of $\\\\mathcal{F}$ and does not contain any member of\\n$\\\\mathcal{I}$. Equivalently, the problem is to check for a distributive lattice\\n$L=L(P)$, given by the poset $P$ of its set of joint-irreducibles, and two\\ngiven antichains $\\\\mathcal{A},\\\\mathcal{B}\\\\subseteq L$ such that no\\n$a\\\\in\\\\mathcal{A}$ is dominated by any $b\\\\in\\\\mathcal{B}$, whether $\\\\mathcal{A}$\\nand $\\\\mathcal{B}$ cover (by domination) the entire lattice. We show that the\\nproblem can be solved in quasi-polynomial time in the sizes of $P$,\\n$\\\\mathcal{A}$ and $\\\\mathcal{B}$, thus answering an open question in Babin and\\nKuznetsov (2017). As an application, we show that minimal infrequent closed\\nsets of attributes in a rational database, with respect to a given implication\\nbase of maximum premise size of one, can be enumerated in incremental\\nquasi-polynomial time.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.6742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给定一个偏序集(偏序集)$P$和一对理想族$\mathcal{I}$,并在$P$中过滤$\mathcal{F}$,使得$(I,F)\ mathcal{I}$中每一对$(I,F)\乘以$ mathcal{F}$有一个非空相交,则$P$上的对偶问题是检查$P$中是否存在一个理想$X$,该理想$X$与$\mathcal{F}$中的每一个成员相交,并且不包含$\mathcal{I}$中的任何成员。同样地,问题是检查一个由其联合不可约集合的偏序集$P$给出的分配格$L=L(P)$,以及两个给定的反链$\mathcal{a},\mathcal{B}\subseteq L$使得\mathcal{a}$中没有$a\被\mathcal{B}$中的任何$ B \支配,以及$\mathcal{a}$和$\mathcal{B}$是否(通过支配)覆盖了整个格。我们证明了这个问题可以在拟多项式时间内以$P$、$\mathcal{A}$和$\mathcal{B}$的大小来解决,从而回答了Babin和kuznetsov(2017)中的一个开放问题。作为一个应用,我们证明了在一个给定的最大前提大小为1的隐含基下,在增量拟多项式时间内可以枚举出有理数据库中最小的非频繁闭集属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Dualization over Distributive Lattices
Given a partially order set (poset) $P$, and a pair of families of ideals $\mathcal{I}$ and filters $\mathcal{F}$ in $P$ such that each pair $(I,F)\in \mathcal{I}\times\mathcal{F}$ has a non-empty intersection, the dualization problem over $P$ is to check whether there is an ideal $X$ in $P$ which intersects every member of $\mathcal{F}$ and does not contain any member of $\mathcal{I}$. Equivalently, the problem is to check for a distributive lattice $L=L(P)$, given by the poset $P$ of its set of joint-irreducibles, and two given antichains $\mathcal{A},\mathcal{B}\subseteq L$ such that no $a\in\mathcal{A}$ is dominated by any $b\in\mathcal{B}$, whether $\mathcal{A}$ and $\mathcal{B}$ cover (by domination) the entire lattice. We show that the problem can be solved in quasi-polynomial time in the sizes of $P$, $\mathcal{A}$ and $\mathcal{B}$, thus answering an open question in Babin and Kuznetsov (2017). As an application, we show that minimal infrequent closed sets of attributes in a rational database, with respect to a given implication base of maximum premise size of one, can be enumerated in incremental quasi-polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信