基于SEER乳腺癌数据的关联规则挖掘预测乳腺癌复发

D. Umesh, B. Ramachandra
{"title":"基于SEER乳腺癌数据的关联规则挖掘预测乳腺癌复发","authors":"D. Umesh, B. Ramachandra","doi":"10.1109/ERECT.2015.7499044","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most well-known type of cancer in women in the developed nations including India. Breast cancer could recur anytime in the breast cancer survivors, however basically it returns in the initial three to five years after the treatment. In this paper we investigate the feasibility of utilizing an association rule mining for a clinical oncology doctor in expectation of breast cancer recurrence on SEER (Surveillance, Epidemiology, and End Results) dataset.","PeriodicalId":140556,"journal":{"name":"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Association rule mining based predicting breast cancer recurrence on SEER breast cancer data\",\"authors\":\"D. Umesh, B. Ramachandra\",\"doi\":\"10.1109/ERECT.2015.7499044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is the most well-known type of cancer in women in the developed nations including India. Breast cancer could recur anytime in the breast cancer survivors, however basically it returns in the initial three to five years after the treatment. In this paper we investigate the feasibility of utilizing an association rule mining for a clinical oncology doctor in expectation of breast cancer recurrence on SEER (Surveillance, Epidemiology, and End Results) dataset.\",\"PeriodicalId\":140556,\"journal\":{\"name\":\"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ERECT.2015.7499044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ERECT.2015.7499044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在包括印度在内的发达国家,乳腺癌是女性最常见的癌症。乳腺癌可能随时在乳腺癌幸存者中复发,但基本上在治疗后的最初三到五年内复发。在本文中,我们研究了在SEER(监测、流行病学和最终结果)数据集上利用关联规则挖掘临床肿瘤医生乳腺癌复发预期的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association rule mining based predicting breast cancer recurrence on SEER breast cancer data
Breast cancer is the most well-known type of cancer in women in the developed nations including India. Breast cancer could recur anytime in the breast cancer survivors, however basically it returns in the initial three to five years after the treatment. In this paper we investigate the feasibility of utilizing an association rule mining for a clinical oncology doctor in expectation of breast cancer recurrence on SEER (Surveillance, Epidemiology, and End Results) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信