Matthias Rausch, S. Streif, C. Pankiewitz, R. Findeisen
{"title":"电池组中单体电池的非线性可观测性和可识别性","authors":"Matthias Rausch, S. Streif, C. Pankiewitz, R. Findeisen","doi":"10.1109/CCA.2013.6662782","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries currently offer the best tradeoff between objectives like performance, energy density and lifetime. To serve the demands of many applications, often a large number of single battery cells are combined into modules or packs of batteries. However, the determination of state of charge and parameters of the single cells is important for the reliable and safe operation of batteries. In the present paper, we investigate the observability and identifiability of cells in battery packs, realized in parallel and serial connections. The analysis is based on linear and nonlinear observability tests exploiting an equivalent circuit model. This leads to conclusive findings concerning the feasibility of estimating the states of single cells from lumped measurements. As shown for cells in parallel connection, one voltage and one current sensor are sufficient to determine state of charge and model parameters of the individual cells. The results are illustrated by simulations.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Nonlinear observability and identifiability of single cells in battery packs\",\"authors\":\"Matthias Rausch, S. Streif, C. Pankiewitz, R. Findeisen\",\"doi\":\"10.1109/CCA.2013.6662782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries currently offer the best tradeoff between objectives like performance, energy density and lifetime. To serve the demands of many applications, often a large number of single battery cells are combined into modules or packs of batteries. However, the determination of state of charge and parameters of the single cells is important for the reliable and safe operation of batteries. In the present paper, we investigate the observability and identifiability of cells in battery packs, realized in parallel and serial connections. The analysis is based on linear and nonlinear observability tests exploiting an equivalent circuit model. This leads to conclusive findings concerning the feasibility of estimating the states of single cells from lumped measurements. As shown for cells in parallel connection, one voltage and one current sensor are sufficient to determine state of charge and model parameters of the individual cells. The results are illustrated by simulations.\",\"PeriodicalId\":379739,\"journal\":{\"name\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2013.6662782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear observability and identifiability of single cells in battery packs
Lithium-ion batteries currently offer the best tradeoff between objectives like performance, energy density and lifetime. To serve the demands of many applications, often a large number of single battery cells are combined into modules or packs of batteries. However, the determination of state of charge and parameters of the single cells is important for the reliable and safe operation of batteries. In the present paper, we investigate the observability and identifiability of cells in battery packs, realized in parallel and serial connections. The analysis is based on linear and nonlinear observability tests exploiting an equivalent circuit model. This leads to conclusive findings concerning the feasibility of estimating the states of single cells from lumped measurements. As shown for cells in parallel connection, one voltage and one current sensor are sufficient to determine state of charge and model parameters of the individual cells. The results are illustrated by simulations.