Ruy Fabila Monroy, J. Leaños, A. L. Trujillo-Negrete
{"title":"关于树的令牌图的连通性","authors":"Ruy Fabila Monroy, J. Leaños, A. L. Trujillo-Negrete","doi":"10.46298/dmtcs.7538","DOIUrl":null,"url":null,"abstract":"Let $k$ and $n$ be integers such that $1\\leq k \\leq n-1$, and let $G$ be a\nsimple graph of order $n$. The $k$-token graph $F_k(G)$ of $G$ is the graph\nwhose vertices are the $k$-subsets of $V(G)$, where two vertices are adjacent\nin $F_k(G)$ whenever their symmetric difference is an edge of $G$. In this\npaper we show that if $G$ is a tree, then the connectivity of $F_k(G)$ is equal\nto the minimum degree of $F_k(G)$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the Connectivity of Token Graphs of Trees\",\"authors\":\"Ruy Fabila Monroy, J. Leaños, A. L. Trujillo-Negrete\",\"doi\":\"10.46298/dmtcs.7538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ and $n$ be integers such that $1\\\\leq k \\\\leq n-1$, and let $G$ be a\\nsimple graph of order $n$. The $k$-token graph $F_k(G)$ of $G$ is the graph\\nwhose vertices are the $k$-subsets of $V(G)$, where two vertices are adjacent\\nin $F_k(G)$ whenever their symmetric difference is an edge of $G$. In this\\npaper we show that if $G$ is a tree, then the connectivity of $F_k(G)$ is equal\\nto the minimum degree of $F_k(G)$.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.7538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.7538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
设$k$和$n$为整数,使得$1\leq k \leq n-1$,设$G$为阶为$n$的简单图。$G$的$k$ -token图$F_k(G)$是其顶点是$V(G)$的$k$ -子集的图,其中两个顶点在$F_k(G)$中相邻,只要它们的对称差是$G$的一条边。本文证明了如果$G$是树,那么$F_k(G)$的连通性等于$F_k(G)$的最小度。
Let $k$ and $n$ be integers such that $1\leq k \leq n-1$, and let $G$ be a
simple graph of order $n$. The $k$-token graph $F_k(G)$ of $G$ is the graph
whose vertices are the $k$-subsets of $V(G)$, where two vertices are adjacent
in $F_k(G)$ whenever their symmetric difference is an edge of $G$. In this
paper we show that if $G$ is a tree, then the connectivity of $F_k(G)$ is equal
to the minimum degree of $F_k(G)$.