基于混合改进布谷鸟搜索方法的数据聚类

A. Pandey, D. Rajpoot, M. Saraswat
{"title":"基于混合改进布谷鸟搜索方法的数据聚类","authors":"A. Pandey, D. Rajpoot, M. Saraswat","doi":"10.1109/IC3.2016.7880195","DOIUrl":null,"url":null,"abstract":"Data clustering is one of the prominent fields of data mining which detects natural groups in a dataset. For the high dimensional dataset, traditional methods generally do not perform efficiently to cluster the data. Therefore, this paper proposes a novel metaheuristic method for data clustering based on k-means and improved cuckoo search to extend the capabilities of traditional clustering methods. The effectiveness of proposed method is tested on the three microarray datasets. Experimen­tal results validate that the proposed method outperforms the existing methods.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Data clustering using hybrid improved cuckoo search method\",\"authors\":\"A. Pandey, D. Rajpoot, M. Saraswat\",\"doi\":\"10.1109/IC3.2016.7880195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering is one of the prominent fields of data mining which detects natural groups in a dataset. For the high dimensional dataset, traditional methods generally do not perform efficiently to cluster the data. Therefore, this paper proposes a novel metaheuristic method for data clustering based on k-means and improved cuckoo search to extend the capabilities of traditional clustering methods. The effectiveness of proposed method is tested on the three microarray datasets. Experimen­tal results validate that the proposed method outperforms the existing methods.\",\"PeriodicalId\":294210,\"journal\":{\"name\":\"2016 Ninth International Conference on Contemporary Computing (IC3)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Ninth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2016.7880195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

数据聚类是数据挖掘的重要领域之一,它检测数据集中的自然组。对于高维数据集,传统的聚类方法通常不能有效地对数据进行聚类。因此,本文提出了一种基于k-means和改进布谷鸟搜索的数据聚类元启发式方法,以扩展传统聚类方法的能力。在三个微阵列数据集上测试了该方法的有效性。实验结果表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data clustering using hybrid improved cuckoo search method
Data clustering is one of the prominent fields of data mining which detects natural groups in a dataset. For the high dimensional dataset, traditional methods generally do not perform efficiently to cluster the data. Therefore, this paper proposes a novel metaheuristic method for data clustering based on k-means and improved cuckoo search to extend the capabilities of traditional clustering methods. The effectiveness of proposed method is tested on the three microarray datasets. Experimen­tal results validate that the proposed method outperforms the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信