基于内容的动物图像检索系统

M. Mustaffa, Wong San San
{"title":"基于内容的动物图像检索系统","authors":"M. Mustaffa, Wong San San","doi":"10.1109/ICSIPA.2017.8120594","DOIUrl":null,"url":null,"abstract":"Many animal species exist in this world and there are always new species being discovered each year. Therefore, it is very important that these valuable species be documented properly to be referred to in future. Numerous information retrieval systems for managing and documenting animal species today only allow users to search animal images and descriptions online via text-based input. Therefore, people without knowledge on the animal species or without Internet access are not able to search using the systems. Motivated by these issues, the focus of this work is to construct a colour-shape content-based image representation for fauna. Two orders of the Colour Moment are used to represent the colour feature while the i-means approach is used to represent the shape feature. Based on the conducted quantitative and qualitative studies, the proposed fusion method together with the Content-based Image Retrieval (CBIR) system are found to be very effective in retrieving animal images similar to the given query, able to provide reliable and useful information on animal species, an easy system to interact with, and has easy to understand and user-friendly interfaces.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Content-based fauna image retrieval system\",\"authors\":\"M. Mustaffa, Wong San San\",\"doi\":\"10.1109/ICSIPA.2017.8120594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many animal species exist in this world and there are always new species being discovered each year. Therefore, it is very important that these valuable species be documented properly to be referred to in future. Numerous information retrieval systems for managing and documenting animal species today only allow users to search animal images and descriptions online via text-based input. Therefore, people without knowledge on the animal species or without Internet access are not able to search using the systems. Motivated by these issues, the focus of this work is to construct a colour-shape content-based image representation for fauna. Two orders of the Colour Moment are used to represent the colour feature while the i-means approach is used to represent the shape feature. Based on the conducted quantitative and qualitative studies, the proposed fusion method together with the Content-based Image Retrieval (CBIR) system are found to be very effective in retrieving animal images similar to the given query, able to provide reliable and useful information on animal species, an easy system to interact with, and has easy to understand and user-friendly interfaces.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

世界上存在着许多动物物种,每年都有新的物种被发现。因此,对这些珍贵物种进行文献记录,以供今后参考是十分重要的。目前,许多管理和记录动物物种的信息检索系统只允许用户通过基于文本的输入在线搜索动物图像和描述。因此,没有动物种类知识或没有互联网接入的人无法使用该系统进行搜索。在这些问题的激励下,本工作的重点是构建一个基于颜色形状内容的动物图像表示。使用两阶颜色矩表示颜色特征,使用i-means方法表示形状特征。通过定量和定性研究,发现该融合方法与基于内容的图像检索(CBIR)系统在检索与给定查询相似的动物图像时非常有效,能够提供可靠和有用的动物物种信息,系统易于交互,界面易于理解和用户友好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-based fauna image retrieval system
Many animal species exist in this world and there are always new species being discovered each year. Therefore, it is very important that these valuable species be documented properly to be referred to in future. Numerous information retrieval systems for managing and documenting animal species today only allow users to search animal images and descriptions online via text-based input. Therefore, people without knowledge on the animal species or without Internet access are not able to search using the systems. Motivated by these issues, the focus of this work is to construct a colour-shape content-based image representation for fauna. Two orders of the Colour Moment are used to represent the colour feature while the i-means approach is used to represent the shape feature. Based on the conducted quantitative and qualitative studies, the proposed fusion method together with the Content-based Image Retrieval (CBIR) system are found to be very effective in retrieving animal images similar to the given query, able to provide reliable and useful information on animal species, an easy system to interact with, and has easy to understand and user-friendly interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信