基于深度学习的心脏MRI左、右心室分割研究进展

D. Irmawati, O. Wahyunggoro, I. Soesanti
{"title":"基于深度学习的心脏MRI左、右心室分割研究进展","authors":"D. Irmawati, O. Wahyunggoro, I. Soesanti","doi":"10.1109/ICITEE49829.2020.9271750","DOIUrl":null,"url":null,"abstract":"Clinical indications of heart disease are shown from left ventricle (LV) or right ventricle (RV) volume measurements of cardiac MRI images. LV and RV segmentation of cardiac MRI images can detect and measure image volume. Public dataset MICCAI, ACDC, Kaggle, and SCD provide data on MRI images of cardiac that have been widely used by researchers. The deep learning method approach can optimally solve problems in analyzing heart disease from cardiac MRI images. The aim of this paper is to determine the availability of public datasets that are appropriate for the research objectives. It can support the optimization of the segmentation method for LV and RV images of cardiac as the contribution of this paper. The results of the study are that the public dataset (MICCAI, ACDC, Kaggle, and SCD) provides sufficient data for the identification, classification, and measurement of LV and RV volumes. Furthermore, a deep learning approach with convolutional neural networks can detect and classify heart diseases with high accuracy.","PeriodicalId":245013,"journal":{"name":"2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recent Trends of Left and Right Ventricle Segmentation in Cardiac MRI Using Deep Learning\",\"authors\":\"D. Irmawati, O. Wahyunggoro, I. Soesanti\",\"doi\":\"10.1109/ICITEE49829.2020.9271750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical indications of heart disease are shown from left ventricle (LV) or right ventricle (RV) volume measurements of cardiac MRI images. LV and RV segmentation of cardiac MRI images can detect and measure image volume. Public dataset MICCAI, ACDC, Kaggle, and SCD provide data on MRI images of cardiac that have been widely used by researchers. The deep learning method approach can optimally solve problems in analyzing heart disease from cardiac MRI images. The aim of this paper is to determine the availability of public datasets that are appropriate for the research objectives. It can support the optimization of the segmentation method for LV and RV images of cardiac as the contribution of this paper. The results of the study are that the public dataset (MICCAI, ACDC, Kaggle, and SCD) provides sufficient data for the identification, classification, and measurement of LV and RV volumes. Furthermore, a deep learning approach with convolutional neural networks can detect and classify heart diseases with high accuracy.\",\"PeriodicalId\":245013,\"journal\":{\"name\":\"2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEE49829.2020.9271750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEE49829.2020.9271750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

心脏病的临床适应症是通过心脏MRI图像的左心室(LV)或右心室(RV)体积测量来显示的。心脏MRI图像的左、右心室分割可以检测和测量图像体积。公共数据集MICCAI、ACDC、Kaggle和SCD提供了研究人员广泛使用的心脏MRI图像数据。深度学习方法可以最优地解决从心脏MRI图像分析心脏病的问题。本文的目的是确定适合研究目标的公共数据集的可用性。作为本文的贡献,它可以支持心脏左、右心室图像分割方法的优化。研究结果表明,MICCAI、ACDC、Kaggle和SCD等公共数据集为左室和右室体积的识别、分类和测量提供了足够的数据。此外,基于卷积神经网络的深度学习方法可以高精度地检测和分类心脏病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Trends of Left and Right Ventricle Segmentation in Cardiac MRI Using Deep Learning
Clinical indications of heart disease are shown from left ventricle (LV) or right ventricle (RV) volume measurements of cardiac MRI images. LV and RV segmentation of cardiac MRI images can detect and measure image volume. Public dataset MICCAI, ACDC, Kaggle, and SCD provide data on MRI images of cardiac that have been widely used by researchers. The deep learning method approach can optimally solve problems in analyzing heart disease from cardiac MRI images. The aim of this paper is to determine the availability of public datasets that are appropriate for the research objectives. It can support the optimization of the segmentation method for LV and RV images of cardiac as the contribution of this paper. The results of the study are that the public dataset (MICCAI, ACDC, Kaggle, and SCD) provides sufficient data for the identification, classification, and measurement of LV and RV volumes. Furthermore, a deep learning approach with convolutional neural networks can detect and classify heart diseases with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信