具有根提取的代数函数的计算

J. J. Ja'
{"title":"具有根提取的代数函数的计算","authors":"J. J. Ja'","doi":"10.1109/SFCS.1981.14","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a set of algebraic functions that involve extracting roots of various degrees. We show that the complexity of computing a large class of algebraic functions is determined by the Galois group G of the extension generated by the functions. We relate the minimum cost to decomposing G into a sequence of normal subgroups such that each factor group is cyclic. We derive an exact answer for the case when the cost is logarithmic, while we provide upper and lower bounds for all the other cases. On the other hand, we develop a reasonably fast algorithm for the abelian case which has been already solved by Pippenger.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computation of algebraic functions with root extractions\",\"authors\":\"J. J. Ja'\",\"doi\":\"10.1109/SFCS.1981.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing a set of algebraic functions that involve extracting roots of various degrees. We show that the complexity of computing a large class of algebraic functions is determined by the Galois group G of the extension generated by the functions. We relate the minimum cost to decomposing G into a sequence of normal subgroups such that each factor group is cyclic. We derive an exact answer for the case when the cost is logarithmic, while we provide upper and lower bounds for all the other cases. On the other hand, we develop a reasonably fast algorithm for the abelian case which has been already solved by Pippenger.\",\"PeriodicalId\":224735,\"journal\":{\"name\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1981.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑计算一组代数函数的问题,这些代数函数涉及到提取不同次的根。我们证明了计算一大类代数函数的复杂度是由函数所产生的扩展的伽罗瓦群G决定的。我们将G分解成一个正常子群的序列,使得每个因子群都是循环的。当成本为对数时,我们推导出一个精确的答案,同时我们为所有其他情况提供了上界和下界。另一方面,针对Pippenger已经解决的阿贝尔情况,我们开发了一种比较快速的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of algebraic functions with root extractions
We consider the problem of computing a set of algebraic functions that involve extracting roots of various degrees. We show that the complexity of computing a large class of algebraic functions is determined by the Galois group G of the extension generated by the functions. We relate the minimum cost to decomposing G into a sequence of normal subgroups such that each factor group is cyclic. We derive an exact answer for the case when the cost is logarithmic, while we provide upper and lower bounds for all the other cases. On the other hand, we develop a reasonably fast algorithm for the abelian case which has been already solved by Pippenger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信