单fpga手写数字识别系统的设计空间探索

T. Huynh
{"title":"单fpga手写数字识别系统的设计空间探索","authors":"T. Huynh","doi":"10.1109/CCE.2014.6916717","DOIUrl":null,"url":null,"abstract":"Multilayer perceptron neural networks have widely been implemented on reconfigurable hardware to perform a variety of applications including classification and pattern recognition. This paper investigates the combined impact of neural network size and reduced precision number formats, used for the representation of the optimal parameters, on the recognition rate a neural network based handwritten digit recognition system. The MNIST database is used for training and testing in this work. After deriving the optimal reduced-precision floating-point format sufficient for achieving a desired recognition performance, we provide an estimate for the hardware resources needed to implement the network on FPGAs. Our work allows for an efficient investigation of tradeoffs in operand word-length, network size, recognition rate and hardware cost of reduced-precision neural network implementations on reconfigurable hardware.","PeriodicalId":377853,"journal":{"name":"2014 IEEE Fifth International Conference on Communications and Electronics (ICCE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design space exploration for a single-FPGA handwritten digit recognition system\",\"authors\":\"T. Huynh\",\"doi\":\"10.1109/CCE.2014.6916717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilayer perceptron neural networks have widely been implemented on reconfigurable hardware to perform a variety of applications including classification and pattern recognition. This paper investigates the combined impact of neural network size and reduced precision number formats, used for the representation of the optimal parameters, on the recognition rate a neural network based handwritten digit recognition system. The MNIST database is used for training and testing in this work. After deriving the optimal reduced-precision floating-point format sufficient for achieving a desired recognition performance, we provide an estimate for the hardware resources needed to implement the network on FPGAs. Our work allows for an efficient investigation of tradeoffs in operand word-length, network size, recognition rate and hardware cost of reduced-precision neural network implementations on reconfigurable hardware.\",\"PeriodicalId\":377853,\"journal\":{\"name\":\"2014 IEEE Fifth International Conference on Communications and Electronics (ICCE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Fifth International Conference on Communications and Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCE.2014.6916717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Fifth International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2014.6916717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

多层感知器神经网络在可重构硬件上得到了广泛的应用,包括分类和模式识别。本文研究了基于神经网络的手写体数字识别系统中,神经网络大小和用于表示最优参数的降精度数字格式对识别率的综合影响。在这项工作中,MNIST数据库用于培训和测试。在推导出足以实现理想识别性能的最佳降精度浮点格式后,我们对在fpga上实现网络所需的硬件资源进行了估计。我们的工作允许在可重构硬件上对操作数字长、网络大小、识别率和降低精度的神经网络实现的硬件成本进行有效的权衡研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design space exploration for a single-FPGA handwritten digit recognition system
Multilayer perceptron neural networks have widely been implemented on reconfigurable hardware to perform a variety of applications including classification and pattern recognition. This paper investigates the combined impact of neural network size and reduced precision number formats, used for the representation of the optimal parameters, on the recognition rate a neural network based handwritten digit recognition system. The MNIST database is used for training and testing in this work. After deriving the optimal reduced-precision floating-point format sufficient for achieving a desired recognition performance, we provide an estimate for the hardware resources needed to implement the network on FPGAs. Our work allows for an efficient investigation of tradeoffs in operand word-length, network size, recognition rate and hardware cost of reduced-precision neural network implementations on reconfigurable hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信