{"title":"用微带技术预测微流体的Cole-Cole参数","authors":"A. Santorelli, J. Schwartz","doi":"10.1109/SAS.2014.6798949","DOIUrl":null,"url":null,"abstract":"In this paper we present the novel design of a microstrip sensor to measure the broadband complex permittivity of small fluid samples and accurately predict their Cole-Cole parameters. This novel approach differs from prior works by placing the fluid analyte in an enclosed chamber underneath the trace of a suspended microstrip, allowing for better overlap between the electromagnetic fields and the fluid in comparison with microfluidic sensors in coplanar technology. A simple direct measurement technique that exploits device symmetry is proposed to extract the dielectric properties of the fluid from full 2-port scattering parameters and is validated through simulation data.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Cole-Cole parameters of microfluids with microstrip technology\",\"authors\":\"A. Santorelli, J. Schwartz\",\"doi\":\"10.1109/SAS.2014.6798949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the novel design of a microstrip sensor to measure the broadband complex permittivity of small fluid samples and accurately predict their Cole-Cole parameters. This novel approach differs from prior works by placing the fluid analyte in an enclosed chamber underneath the trace of a suspended microstrip, allowing for better overlap between the electromagnetic fields and the fluid in comparison with microfluidic sensors in coplanar technology. A simple direct measurement technique that exploits device symmetry is proposed to extract the dielectric properties of the fluid from full 2-port scattering parameters and is validated through simulation data.\",\"PeriodicalId\":125872,\"journal\":{\"name\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2014.6798949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Cole-Cole parameters of microfluids with microstrip technology
In this paper we present the novel design of a microstrip sensor to measure the broadband complex permittivity of small fluid samples and accurately predict their Cole-Cole parameters. This novel approach differs from prior works by placing the fluid analyte in an enclosed chamber underneath the trace of a suspended microstrip, allowing for better overlap between the electromagnetic fields and the fluid in comparison with microfluidic sensors in coplanar technology. A simple direct measurement technique that exploits device symmetry is proposed to extract the dielectric properties of the fluid from full 2-port scattering parameters and is validated through simulation data.