{"title":"标准0.16μm CMOS中为1.1V电源提供的0.0025mm2带隙基准电压","authors":"A. Annema, G. Goksun","doi":"10.1109/ISSCC.2012.6177053","DOIUrl":null,"url":null,"abstract":"Todays ICs usually employ one bandgap voltage reference (BGVR) circuit to generate a well defined voltage that is reused at many places in that IC. The classical BGVR generates a reference voltage that is slightly larger than the material bandgap: a little above 1200mV in silicon. For deep-sub-micron technologies the supply voltage is about the same as the material bandgap which prevents using the classical bandgap structure. As a solution a number of BGVR topologies that create a sub-1V are invented; most of them are based on the structure introduced by Banba [1], some are using resistive voltage division [2] or voltage averaging [3]. For low-power operation high-ohmic resistors (occupying a large area!) must be used in all these techniques, leading to an immediate trade-off between power consumption and chip-area. This trade-off prevents the local generation of reference voltages where they are required: either the power penalty or the area penalty would be too significant. Alternative topologies that do not require high-ohmic resistors typically are not-BGVR-based circuits relying on threshold voltages and hence require trimming to achieve low spread.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A 0.0025mm2 bandgap voltage reference for 1.1V supply in standard 0.16μm CMOS\",\"authors\":\"A. Annema, G. Goksun\",\"doi\":\"10.1109/ISSCC.2012.6177053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Todays ICs usually employ one bandgap voltage reference (BGVR) circuit to generate a well defined voltage that is reused at many places in that IC. The classical BGVR generates a reference voltage that is slightly larger than the material bandgap: a little above 1200mV in silicon. For deep-sub-micron technologies the supply voltage is about the same as the material bandgap which prevents using the classical bandgap structure. As a solution a number of BGVR topologies that create a sub-1V are invented; most of them are based on the structure introduced by Banba [1], some are using resistive voltage division [2] or voltage averaging [3]. For low-power operation high-ohmic resistors (occupying a large area!) must be used in all these techniques, leading to an immediate trade-off between power consumption and chip-area. This trade-off prevents the local generation of reference voltages where they are required: either the power penalty or the area penalty would be too significant. Alternative topologies that do not require high-ohmic resistors typically are not-BGVR-based circuits relying on threshold voltages and hence require trimming to achieve low spread.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6177053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6177053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.0025mm2 bandgap voltage reference for 1.1V supply in standard 0.16μm CMOS
Todays ICs usually employ one bandgap voltage reference (BGVR) circuit to generate a well defined voltage that is reused at many places in that IC. The classical BGVR generates a reference voltage that is slightly larger than the material bandgap: a little above 1200mV in silicon. For deep-sub-micron technologies the supply voltage is about the same as the material bandgap which prevents using the classical bandgap structure. As a solution a number of BGVR topologies that create a sub-1V are invented; most of them are based on the structure introduced by Banba [1], some are using resistive voltage division [2] or voltage averaging [3]. For low-power operation high-ohmic resistors (occupying a large area!) must be used in all these techniques, leading to an immediate trade-off between power consumption and chip-area. This trade-off prevents the local generation of reference voltages where they are required: either the power penalty or the area penalty would be too significant. Alternative topologies that do not require high-ohmic resistors typically are not-BGVR-based circuits relying on threshold voltages and hence require trimming to achieve low spread.