Virgílio A. Bento, J. P. Cunha, Filipe M. T. Silva
{"title":"迈向基于大脑电活动的人机界面","authors":"Virgílio A. Bento, J. P. Cunha, Filipe M. T. Silva","doi":"10.1109/ICHR.2008.4755936","DOIUrl":null,"url":null,"abstract":"Recent advances in computer hardware and signal processing assert that controlling certain functions by thoughts may represent a landmark in the way we interact with many output devices. This paper exploits the possibility of achieving a communication channel between the brain and a mobile robot through the modulation of the electroencephalogram (EEG) signal during motor imagery tasks. A major concern was directed towards designing a generalized and multi-purpose framework that supports rapid prototyping of various experimental strategies and operating modes. Preliminary results of brain-state estimation using EEG signals recorded during a self-paced left/right hand movement task are also presented. The user successfully learned to operate the system and how to better perform the motor-related tasks based on outcomes produced by its mental focus.","PeriodicalId":402020,"journal":{"name":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Towards a human-robot interface based on the electrical activity of the brain\",\"authors\":\"Virgílio A. Bento, J. P. Cunha, Filipe M. T. Silva\",\"doi\":\"10.1109/ICHR.2008.4755936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in computer hardware and signal processing assert that controlling certain functions by thoughts may represent a landmark in the way we interact with many output devices. This paper exploits the possibility of achieving a communication channel between the brain and a mobile robot through the modulation of the electroencephalogram (EEG) signal during motor imagery tasks. A major concern was directed towards designing a generalized and multi-purpose framework that supports rapid prototyping of various experimental strategies and operating modes. Preliminary results of brain-state estimation using EEG signals recorded during a self-paced left/right hand movement task are also presented. The user successfully learned to operate the system and how to better perform the motor-related tasks based on outcomes produced by its mental focus.\",\"PeriodicalId\":402020,\"journal\":{\"name\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHR.2008.4755936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHR.2008.4755936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a human-robot interface based on the electrical activity of the brain
Recent advances in computer hardware and signal processing assert that controlling certain functions by thoughts may represent a landmark in the way we interact with many output devices. This paper exploits the possibility of achieving a communication channel between the brain and a mobile robot through the modulation of the electroencephalogram (EEG) signal during motor imagery tasks. A major concern was directed towards designing a generalized and multi-purpose framework that supports rapid prototyping of various experimental strategies and operating modes. Preliminary results of brain-state estimation using EEG signals recorded during a self-paced left/right hand movement task are also presented. The user successfully learned to operate the system and how to better perform the motor-related tasks based on outcomes produced by its mental focus.