性能和接口缓冲区大小驱动的嵌入式系统行为分区

Ta-Cheng Lin, S. M. Sait, W. Cyre
{"title":"性能和接口缓冲区大小驱动的嵌入式系统行为分区","authors":"Ta-Cheng Lin, S. M. Sait, W. Cyre","doi":"10.1109/IWRSP.1998.676679","DOIUrl":null,"url":null,"abstract":"One of the major differences in partitioning for co-design is in the way the communication cost is evaluated. Generally, the size of the edge cut-set is used. When communication between components is through buffered channels, the size of the edge cut-set is not adequate to estimate the buffer size. A second important factor to measure the quality of partitioning is the system delay. Most partitioning approaches use the number of nodes/functions in each partition as constraints and attempt to minimize the communication cost. The data dependencies among nodes/functions and their delays are not considered. In this paper, we present partitioning with two objectives: (1) buffer size, which is estimated by analyzing the data flow patterns of the control data flow graph (CDFG) and solved as a clique partitioning problem, and (2) the system delay that is estimated using list scheduling. We pose the problem as a combinatorial optimization and use an efficient non-deterministic search algorithm, called the problem-space genetic algorithm, to search for the optimum. Experimental results indicate that, according to a proposed quality metric, our approach can attain an average 87% of the optimum for two-way partitioning.","PeriodicalId":310447,"journal":{"name":"Proceedings. Ninth International Workshop on Rapid System Prototyping (Cat. No.98TB100237)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance and interface buffer size driven behavioral partitioning for embedded systems\",\"authors\":\"Ta-Cheng Lin, S. M. Sait, W. Cyre\",\"doi\":\"10.1109/IWRSP.1998.676679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major differences in partitioning for co-design is in the way the communication cost is evaluated. Generally, the size of the edge cut-set is used. When communication between components is through buffered channels, the size of the edge cut-set is not adequate to estimate the buffer size. A second important factor to measure the quality of partitioning is the system delay. Most partitioning approaches use the number of nodes/functions in each partition as constraints and attempt to minimize the communication cost. The data dependencies among nodes/functions and their delays are not considered. In this paper, we present partitioning with two objectives: (1) buffer size, which is estimated by analyzing the data flow patterns of the control data flow graph (CDFG) and solved as a clique partitioning problem, and (2) the system delay that is estimated using list scheduling. We pose the problem as a combinatorial optimization and use an efficient non-deterministic search algorithm, called the problem-space genetic algorithm, to search for the optimum. Experimental results indicate that, according to a proposed quality metric, our approach can attain an average 87% of the optimum for two-way partitioning.\",\"PeriodicalId\":310447,\"journal\":{\"name\":\"Proceedings. Ninth International Workshop on Rapid System Prototyping (Cat. No.98TB100237)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Ninth International Workshop on Rapid System Prototyping (Cat. No.98TB100237)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWRSP.1998.676679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Ninth International Workshop on Rapid System Prototyping (Cat. No.98TB100237)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWRSP.1998.676679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

协同设计分区的主要区别之一是评估通信成本的方式。一般采用边割集的大小。当组件之间的通信是通过缓冲通道时,边缘切割集的大小不足以估计缓冲区的大小。衡量分区质量的第二个重要因素是系统延迟。大多数分区方法使用每个分区中的节点/函数的数量作为约束,并尝试最小化通信成本。不考虑节点/函数之间的数据依赖关系及其延迟。在本文中,我们提出了两个分区目标:(1)通过分析控制数据流图(CDFG)的数据流模式来估计缓冲区大小,并将其作为一个团分区问题来解决;(2)使用列表调度来估计系统延迟。我们提出了一个组合优化问题,并使用一种高效的非确定性搜索算法,即问题空间遗传算法,来搜索最优解。实验结果表明,根据提出的质量度量,我们的方法可以达到双向划分的平均87%的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance and interface buffer size driven behavioral partitioning for embedded systems
One of the major differences in partitioning for co-design is in the way the communication cost is evaluated. Generally, the size of the edge cut-set is used. When communication between components is through buffered channels, the size of the edge cut-set is not adequate to estimate the buffer size. A second important factor to measure the quality of partitioning is the system delay. Most partitioning approaches use the number of nodes/functions in each partition as constraints and attempt to minimize the communication cost. The data dependencies among nodes/functions and their delays are not considered. In this paper, we present partitioning with two objectives: (1) buffer size, which is estimated by analyzing the data flow patterns of the control data flow graph (CDFG) and solved as a clique partitioning problem, and (2) the system delay that is estimated using list scheduling. We pose the problem as a combinatorial optimization and use an efficient non-deterministic search algorithm, called the problem-space genetic algorithm, to search for the optimum. Experimental results indicate that, according to a proposed quality metric, our approach can attain an average 87% of the optimum for two-way partitioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信