多项式回归模型的标准不确定度估计

Arvind Rajan, Y. Kuang, M. Ooi, S. Demidenko
{"title":"多项式回归模型的标准不确定度估计","authors":"Arvind Rajan, Y. Kuang, M. Ooi, S. Demidenko","doi":"10.1109/SAS.2014.6798947","DOIUrl":null,"url":null,"abstract":"Polynomial regression model is very important in the modeling and characterization of sensors. The uncertainty propagation through the polynomial nonlinearity can only be estimated through numerical simulation or linearization approximation according to the Guide to the expression of Uncertainty in Measurement. This paper developed a general cookbook style guide to derive the analytical expression of uncertainty propagating through the polynomial regression models. The proposed method can be easily incorporated into any computer algebra system for reliable and fast evaluation. Specific expressions are derived explicitly for some of the most commonly used low order polynomial regression models. The framework is applied to a few recently published sensor and measurement system models.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Standard Uncertainty estimation on polynomial regression models\",\"authors\":\"Arvind Rajan, Y. Kuang, M. Ooi, S. Demidenko\",\"doi\":\"10.1109/SAS.2014.6798947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polynomial regression model is very important in the modeling and characterization of sensors. The uncertainty propagation through the polynomial nonlinearity can only be estimated through numerical simulation or linearization approximation according to the Guide to the expression of Uncertainty in Measurement. This paper developed a general cookbook style guide to derive the analytical expression of uncertainty propagating through the polynomial regression models. The proposed method can be easily incorporated into any computer algebra system for reliable and fast evaluation. Specific expressions are derived explicitly for some of the most commonly used low order polynomial regression models. The framework is applied to a few recently published sensor and measurement system models.\",\"PeriodicalId\":125872,\"journal\":{\"name\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2014.6798947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多项式回归模型在传感器的建模和表征中具有重要的意义。通过多项式非线性传播的不确定度只能根据《测量不确定度表达指南》通过数值模拟或线性化近似来估计。本文开发了一种通用的食谱式指南,用于推导通过多项式回归模型传播的不确定性的解析表达式。该方法可以方便地集成到任何计算机代数系统中,以实现可靠和快速的评估。对于一些最常用的低阶多项式回归模型,明确地导出了特定的表达式。该框架应用于最近发表的几个传感器和测量系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standard Uncertainty estimation on polynomial regression models
Polynomial regression model is very important in the modeling and characterization of sensors. The uncertainty propagation through the polynomial nonlinearity can only be estimated through numerical simulation or linearization approximation according to the Guide to the expression of Uncertainty in Measurement. This paper developed a general cookbook style guide to derive the analytical expression of uncertainty propagating through the polynomial regression models. The proposed method can be easily incorporated into any computer algebra system for reliable and fast evaluation. Specific expressions are derived explicitly for some of the most commonly used low order polynomial regression models. The framework is applied to a few recently published sensor and measurement system models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信