扩展视频中新的活动检测算法

L. Yao, Ying Qian
{"title":"扩展视频中新的活动检测算法","authors":"L. Yao, Ying Qian","doi":"10.1109/WACVW.2019.00009","DOIUrl":null,"url":null,"abstract":"Due to participation in TRECVID ActEV[1] competition, we conduct research on temporal activity recognition. In this paper, we propose a system for activity detection and localize detected activities temporally in extended videos. Our system firstly detects objects in video frames. Secondly, we use position information of detected object, as input to the object tracking model, which can obtain motion information of multiple objects in consecutive frames. Lastly, we input consecutive video frames containing only detected objects into 3D Convolutional Neural Network to achieve features, and 3D CNN is followed by a recurrent neural network for accurately localizing the detected activity.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Activities Detection Algorithm in Extended Videos\",\"authors\":\"L. Yao, Ying Qian\",\"doi\":\"10.1109/WACVW.2019.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to participation in TRECVID ActEV[1] competition, we conduct research on temporal activity recognition. In this paper, we propose a system for activity detection and localize detected activities temporally in extended videos. Our system firstly detects objects in video frames. Secondly, we use position information of detected object, as input to the object tracking model, which can obtain motion information of multiple objects in consecutive frames. Lastly, we input consecutive video frames containing only detected objects into 3D Convolutional Neural Network to achieve features, and 3D CNN is followed by a recurrent neural network for accurately localizing the detected activity.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2019.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于参加了TRECVID ActEV[1]竞赛,我们对时间活动识别进行了研究。在本文中,我们提出了一个活动检测系统,并在扩展视频中暂时定位检测到的活动。我们的系统首先检测视频帧中的物体。其次,将检测到的目标位置信息作为目标跟踪模型的输入,获得连续帧内多个目标的运动信息;最后,我们将只包含检测到的目标的连续视频帧输入到3D卷积神经网络中进行特征提取,然后在3D CNN之后进行循环神经网络精确定位检测到的活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Activities Detection Algorithm in Extended Videos
Due to participation in TRECVID ActEV[1] competition, we conduct research on temporal activity recognition. In this paper, we propose a system for activity detection and localize detected activities temporally in extended videos. Our system firstly detects objects in video frames. Secondly, we use position information of detected object, as input to the object tracking model, which can obtain motion information of multiple objects in consecutive frames. Lastly, we input consecutive video frames containing only detected objects into 3D Convolutional Neural Network to achieve features, and 3D CNN is followed by a recurrent neural network for accurately localizing the detected activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信