{"title":"强海流零能见度条件下AUV (MI)的研制","authors":"Juhyun Pyo, Son-cheol Yu","doi":"10.1109/AUV.2016.7778720","DOIUrl":null,"url":null,"abstract":"The typical autonomous underwater vehicles (AUVs) are widely used in underwater exploration. However, there are difficulties to use AUVs in constrained environments such as the strong current or poor visibility. In this paper, we proposed the novel design and operation strategy of AUV that can overcome these restricted condition. The proposed AUV is composed by upper and lower body with specific technologies. Two bodies have different shape and role. The lower body is firmly fixed on the seafloor, and guides the upper body connected by tether to the target. The upper body is in close proximity to the target to obtain the optical information. In this process, it is important that such buoyancy control, winch control and sensor fusion.","PeriodicalId":416057,"journal":{"name":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of AUV (MI) for strong ocean current and zero-visibility condition\",\"authors\":\"Juhyun Pyo, Son-cheol Yu\",\"doi\":\"10.1109/AUV.2016.7778720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The typical autonomous underwater vehicles (AUVs) are widely used in underwater exploration. However, there are difficulties to use AUVs in constrained environments such as the strong current or poor visibility. In this paper, we proposed the novel design and operation strategy of AUV that can overcome these restricted condition. The proposed AUV is composed by upper and lower body with specific technologies. Two bodies have different shape and role. The lower body is firmly fixed on the seafloor, and guides the upper body connected by tether to the target. The upper body is in close proximity to the target to obtain the optical information. In this process, it is important that such buoyancy control, winch control and sensor fusion.\",\"PeriodicalId\":416057,\"journal\":{\"name\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV.2016.7778720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2016.7778720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of AUV (MI) for strong ocean current and zero-visibility condition
The typical autonomous underwater vehicles (AUVs) are widely used in underwater exploration. However, there are difficulties to use AUVs in constrained environments such as the strong current or poor visibility. In this paper, we proposed the novel design and operation strategy of AUV that can overcome these restricted condition. The proposed AUV is composed by upper and lower body with specific technologies. Two bodies have different shape and role. The lower body is firmly fixed on the seafloor, and guides the upper body connected by tether to the target. The upper body is in close proximity to the target to obtain the optical information. In this process, it is important that such buoyancy control, winch control and sensor fusion.