离焦深度与学习光学成像和闭塞感知深度估计

H. Ikoma, Cindy M. Nguyen, Christopher A. Metzler, Yifan Peng, Gordon Wetzstein
{"title":"离焦深度与学习光学成像和闭塞感知深度估计","authors":"H. Ikoma, Cindy M. Nguyen, Christopher A. Metzler, Yifan Peng, Gordon Wetzstein","doi":"10.1109/ICCP51581.2021.9466261","DOIUrl":null,"url":null,"abstract":"Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment.","PeriodicalId":132124,"journal":{"name":"2021 IEEE International Conference on Computational Photography (ICCP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation\",\"authors\":\"H. Ikoma, Cindy M. Nguyen, Christopher A. Metzler, Yifan Peng, Gordon Wetzstein\",\"doi\":\"10.1109/ICCP51581.2021.9466261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment.\",\"PeriodicalId\":132124,\"journal\":{\"name\":\"2021 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP51581.2021.9466261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP51581.2021.9466261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

单目深度估计仍然是一个具有挑战性的问题,尽管仅利用图像深度线索的神经网络架构取得了重大进展。受离焦深度和新兴的点扩展函数工程方法的启发,我们提出了一个新的改进框架,使用学习的相位编码孔径从单个RGB图像进行深度估计。我们优化的孔径设计使用旋转对称约束来提高计算效率,并且我们使用闭塞感知图像形成模型联合训练光学和网络,该模型在深度不连续处提供比以前技术更精确的离焦模糊。利用该框架和自定义原型相机,我们在仿真和实验中展示了端到端优化计算相机中最先进的图像和深度估计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation
Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信