受阿美族语言启发的形态学统计模型

I. Bril, Achraf Lassoued, Michel de Rougemont
{"title":"受阿美族语言启发的形态学统计模型","authors":"I. Bril, Achraf Lassoued, Michel de Rougemont","doi":"10.5121/ijwest.2022.13201","DOIUrl":null,"url":null,"abstract":"We introduce a statistical model for analysing the morphology of natural languages based on their affixes. The model was inspired by the analysis of Amis, an Austronesian language with a rich morphology. As words contain a root and potential affixes, we associate three vectors with each word: one for the root, one for the prefixes, and one for the suffixes. The morphology captures semantic notions and we show how to approximately predict some of them, for example the type of simple sentences using prefixes and suffixes only. We then define a Sentence vector s associated with each sentence, built from the prefixes and suffixes of the sentence and show how to approximately predict a derivation tree in a grammar.","PeriodicalId":265326,"journal":{"name":"International journal of Web & Semantic Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical model for morphology inspired by the Amis language\",\"authors\":\"I. Bril, Achraf Lassoued, Michel de Rougemont\",\"doi\":\"10.5121/ijwest.2022.13201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a statistical model for analysing the morphology of natural languages based on their affixes. The model was inspired by the analysis of Amis, an Austronesian language with a rich morphology. As words contain a root and potential affixes, we associate three vectors with each word: one for the root, one for the prefixes, and one for the suffixes. The morphology captures semantic notions and we show how to approximately predict some of them, for example the type of simple sentences using prefixes and suffixes only. We then define a Sentence vector s associated with each sentence, built from the prefixes and suffixes of the sentence and show how to approximately predict a derivation tree in a grammar.\",\"PeriodicalId\":265326,\"journal\":{\"name\":\"International journal of Web & Semantic Technology\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of Web & Semantic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijwest.2022.13201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of Web & Semantic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijwest.2022.13201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于词缀的自然语言词法分析统计模型。该模型的灵感来自于对Amis的分析,这是一种具有丰富形态学的南岛语言。由于单词包含词根和潜在词缀,我们将三个向量与每个单词关联:一个用于词根,一个用于前缀,一个用于后缀。形态学捕获语义概念,我们展示了如何近似预测其中的一些概念,例如仅使用前缀和后缀的简单句子的类型。然后,我们定义了一个与每个句子相关的句子向量s,它由句子的前缀和后缀构建,并展示了如何在语法中近似地预测派生树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical model for morphology inspired by the Amis language
We introduce a statistical model for analysing the morphology of natural languages based on their affixes. The model was inspired by the analysis of Amis, an Austronesian language with a rich morphology. As words contain a root and potential affixes, we associate three vectors with each word: one for the root, one for the prefixes, and one for the suffixes. The morphology captures semantic notions and we show how to approximately predict some of them, for example the type of simple sentences using prefixes and suffixes only. We then define a Sentence vector s associated with each sentence, built from the prefixes and suffixes of the sentence and show how to approximately predict a derivation tree in a grammar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信