M. Shifrin, D. Menasché, A. Cohen, Omer Gurewitz, D. Goeckel
{"title":"无线网络中最优PHY配置的SMDP方法","authors":"M. Shifrin, D. Menasché, A. Cohen, Omer Gurewitz, D. Goeckel","doi":"10.1109/WONS.2017.7888760","DOIUrl":null,"url":null,"abstract":"In this work, we study the optimal configuration of the physical layer in wireless networks by means of Semi-Markov Decision Process (SMDP) modeling. In particular, assume the physical layer is characterized by a set of potential operating points, with each point corresponding to a rate and reliability pair; for example, these pairs might be obtained through a now-standard diversity-vs-multiplexing tradeoff characterization. Given the current network state (e.g., buffer occupancies), a Decision Maker (DM) needs to dynamically decide which operating point to use. The SMDP problem formulation allows us to choose from these pairs an optimal selection, which is expressed by a decision rule as a function of the number of awaiting packets in the source's finite queue, channel state, size of the packet to be transmitted. We derive a general solution which covers various model configurations, including packet size distributions and varying channels. For the specific case of exponential transmission time, we analytically prove the optimal policy has a threshold structure. Numerical results validate this finding, as well as depict muti-threshold policies for time varying channels such as the Gilber-Elliot channel.","PeriodicalId":110653,"journal":{"name":"2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An SMDP approach to optimal PHY configuration in wireless networks\",\"authors\":\"M. Shifrin, D. Menasché, A. Cohen, Omer Gurewitz, D. Goeckel\",\"doi\":\"10.1109/WONS.2017.7888760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the optimal configuration of the physical layer in wireless networks by means of Semi-Markov Decision Process (SMDP) modeling. In particular, assume the physical layer is characterized by a set of potential operating points, with each point corresponding to a rate and reliability pair; for example, these pairs might be obtained through a now-standard diversity-vs-multiplexing tradeoff characterization. Given the current network state (e.g., buffer occupancies), a Decision Maker (DM) needs to dynamically decide which operating point to use. The SMDP problem formulation allows us to choose from these pairs an optimal selection, which is expressed by a decision rule as a function of the number of awaiting packets in the source's finite queue, channel state, size of the packet to be transmitted. We derive a general solution which covers various model configurations, including packet size distributions and varying channels. For the specific case of exponential transmission time, we analytically prove the optimal policy has a threshold structure. Numerical results validate this finding, as well as depict muti-threshold policies for time varying channels such as the Gilber-Elliot channel.\",\"PeriodicalId\":110653,\"journal\":{\"name\":\"2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WONS.2017.7888760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WONS.2017.7888760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An SMDP approach to optimal PHY configuration in wireless networks
In this work, we study the optimal configuration of the physical layer in wireless networks by means of Semi-Markov Decision Process (SMDP) modeling. In particular, assume the physical layer is characterized by a set of potential operating points, with each point corresponding to a rate and reliability pair; for example, these pairs might be obtained through a now-standard diversity-vs-multiplexing tradeoff characterization. Given the current network state (e.g., buffer occupancies), a Decision Maker (DM) needs to dynamically decide which operating point to use. The SMDP problem formulation allows us to choose from these pairs an optimal selection, which is expressed by a decision rule as a function of the number of awaiting packets in the source's finite queue, channel state, size of the packet to be transmitted. We derive a general solution which covers various model configurations, including packet size distributions and varying channels. For the specific case of exponential transmission time, we analytically prove the optimal policy has a threshold structure. Numerical results validate this finding, as well as depict muti-threshold policies for time varying channels such as the Gilber-Elliot channel.