多速率VLSI阵列的合成

P. Lenders, S. Rajopadhye
{"title":"多速率VLSI阵列的合成","authors":"P. Lenders, S. Rajopadhye","doi":"10.1109/ASAP.1995.523640","DOIUrl":null,"url":null,"abstract":"Many applications in signal and image processing can be implemented on regular VLSI architectures such as systolic arrays. Multirate arrays, or MRAs are an extension of systolic arrays where different data streams propagate with different clocks. It is known that they can be modelled as systems of uniform recurrence equations over sparse polyhedral domains. Using well known linear index transformation rules for systems of affine recurrence equations, or SAREs, we show that MRAs constitute a particular proper subset of SAREs. We describe how an MRA can be systematically derived from an initial specification in the form of a mathematical equation. The main transformation that we use is dependency decomposition, and rue illustrate our method by deriving a hitherto unknown decimation filter array that improves upon the hardware cost of previously published filters.","PeriodicalId":354358,"journal":{"name":"Proceedings The International Conference on Application Specific Array Processors","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis of multirate VLSI arrays\",\"authors\":\"P. Lenders, S. Rajopadhye\",\"doi\":\"10.1109/ASAP.1995.523640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications in signal and image processing can be implemented on regular VLSI architectures such as systolic arrays. Multirate arrays, or MRAs are an extension of systolic arrays where different data streams propagate with different clocks. It is known that they can be modelled as systems of uniform recurrence equations over sparse polyhedral domains. Using well known linear index transformation rules for systems of affine recurrence equations, or SAREs, we show that MRAs constitute a particular proper subset of SAREs. We describe how an MRA can be systematically derived from an initial specification in the form of a mathematical equation. The main transformation that we use is dependency decomposition, and rue illustrate our method by deriving a hitherto unknown decimation filter array that improves upon the hardware cost of previously published filters.\",\"PeriodicalId\":354358,\"journal\":{\"name\":\"Proceedings The International Conference on Application Specific Array Processors\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings The International Conference on Application Specific Array Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.1995.523640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings The International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1995.523640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

信号和图像处理中的许多应用可以在常规的VLSI架构上实现,例如收缩阵列。多速率阵列(mra)是收缩阵列的扩展,其中不同的数据流以不同的时钟传播。已知它们可以被建模为稀疏多面体域上的一致递归方程组。利用已知的仿射递推方程组(SAREs)的线性指标变换规则,我们证明了mra构成了SAREs的一个特定的固有子集。我们描述了MRA如何以数学方程的形式从初始规范系统地推导出来。我们使用的主要转换是依赖项分解,我们通过派生一个迄今未知的抽取过滤器数组来说明我们的方法,该数组改进了先前发布的过滤器的硬件成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of multirate VLSI arrays
Many applications in signal and image processing can be implemented on regular VLSI architectures such as systolic arrays. Multirate arrays, or MRAs are an extension of systolic arrays where different data streams propagate with different clocks. It is known that they can be modelled as systems of uniform recurrence equations over sparse polyhedral domains. Using well known linear index transformation rules for systems of affine recurrence equations, or SAREs, we show that MRAs constitute a particular proper subset of SAREs. We describe how an MRA can be systematically derived from an initial specification in the form of a mathematical equation. The main transformation that we use is dependency decomposition, and rue illustrate our method by deriving a hitherto unknown decimation filter array that improves upon the hardware cost of previously published filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信