{"title":"基于硬件加速光线追踪的非结构化体的有效空间跳跃和自适应采样","authors":"N. Morrical, W. Usher, I. Wald, Valerio Pascucci","doi":"10.1109/VISUAL.2019.8933539","DOIUrl":null,"url":null,"abstract":"Sample based ray marching is an effective method for direct volume rendering of unstructured meshes. However, sampling such meshes remains expensive, and strategies to reduce the number of samples taken have received relatively little attention. In this paper, we introduce a method for rendering unstructured meshes using a combination of a coarse spatial acceleration structure and hardware-accelerated ray tracing. Our approach enables efficient empty space skipping and adaptive sampling of unstructured meshes, and outperforms a reference ray marcher by up to 7×.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Efficient Space Skipping and Adaptive Sampling of Unstructured Volumes Using Hardware Accelerated Ray Tracing\",\"authors\":\"N. Morrical, W. Usher, I. Wald, Valerio Pascucci\",\"doi\":\"10.1109/VISUAL.2019.8933539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sample based ray marching is an effective method for direct volume rendering of unstructured meshes. However, sampling such meshes remains expensive, and strategies to reduce the number of samples taken have received relatively little attention. In this paper, we introduce a method for rendering unstructured meshes using a combination of a coarse spatial acceleration structure and hardware-accelerated ray tracing. Our approach enables efficient empty space skipping and adaptive sampling of unstructured meshes, and outperforms a reference ray marcher by up to 7×.\",\"PeriodicalId\":192801,\"journal\":{\"name\":\"2019 IEEE Visualization Conference (VIS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2019.8933539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Space Skipping and Adaptive Sampling of Unstructured Volumes Using Hardware Accelerated Ray Tracing
Sample based ray marching is an effective method for direct volume rendering of unstructured meshes. However, sampling such meshes remains expensive, and strategies to reduce the number of samples taken have received relatively little attention. In this paper, we introduce a method for rendering unstructured meshes using a combination of a coarse spatial acceleration structure and hardware-accelerated ray tracing. Our approach enables efficient empty space skipping and adaptive sampling of unstructured meshes, and outperforms a reference ray marcher by up to 7×.