用随机界改进随机模型检验

J. Fourneau, N. Pekergin, S. Younès
{"title":"用随机界改进随机模型检验","authors":"J. Fourneau, N. Pekergin, S. Younès","doi":"10.1109/SAINTW.2005.67","DOIUrl":null,"url":null,"abstract":"Stochastic model checking requires the computation of steady-state or transient distribution for finite or infinite Markov chains for the evaluation of some formulas implying probabilities. However the numerical analysis of Markov chains is much less efficient than the sophisticated algorithmic techniques such as MTBDD developed for the deterministic model checking. We propose to simplify the numerical evaluation of probabilities using stochastic bounds. We show that this approach can be used to bound transient, steady-state and cumulative rewards and may help to evaluate efficiently formulas based on these rewards.","PeriodicalId":220913,"journal":{"name":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving Stochastic Model Checking with Stochastic Bounds\",\"authors\":\"J. Fourneau, N. Pekergin, S. Younès\",\"doi\":\"10.1109/SAINTW.2005.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic model checking requires the computation of steady-state or transient distribution for finite or infinite Markov chains for the evaluation of some formulas implying probabilities. However the numerical analysis of Markov chains is much less efficient than the sophisticated algorithmic techniques such as MTBDD developed for the deterministic model checking. We propose to simplify the numerical evaluation of probabilities using stochastic bounds. We show that this approach can be used to bound transient, steady-state and cumulative rewards and may help to evaluate efficiently formulas based on these rewards.\",\"PeriodicalId\":220913,\"journal\":{\"name\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAINTW.2005.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINTW.2005.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随机模型验算需要计算有限或无限马尔可夫链的稳态或瞬态分布,以求出一些包含概率的公式。然而,马尔可夫链的数值分析的效率远远低于为确定性模型检验而开发的复杂算法技术,如MTBDD。我们提出用随机边界来简化概率的数值计算。我们证明,这种方法可以用于约束暂态、稳态和累积奖励,并有助于有效地评估基于这些奖励的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Stochastic Model Checking with Stochastic Bounds
Stochastic model checking requires the computation of steady-state or transient distribution for finite or infinite Markov chains for the evaluation of some formulas implying probabilities. However the numerical analysis of Markov chains is much less efficient than the sophisticated algorithmic techniques such as MTBDD developed for the deterministic model checking. We propose to simplify the numerical evaluation of probabilities using stochastic bounds. We show that this approach can be used to bound transient, steady-state and cumulative rewards and may help to evaluate efficiently formulas based on these rewards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信